Synthesis of rod-shaped nano-hydroxyapatites using Aloe vera plant extract and their characterization

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Md. Sahadat Hossain, Shirin Akter Jahan, Dipa Islam, Umme Sarmeen Akhtar and Samina Ahmed
{"title":"Synthesis of rod-shaped nano-hydroxyapatites using Aloe vera plant extract and their characterization","authors":"Md. Sahadat Hossain, Shirin Akter Jahan, Dipa Islam, Umme Sarmeen Akhtar and Samina Ahmed","doi":"10.1039/D4ME00165F","DOIUrl":null,"url":null,"abstract":"<p >Size-dependent applications of biomaterials are increasing day by day, and rod-shaped biomaterials are drawing researchers attention for their different enhanced properties. Different types of chemicals are used to modify the crystal structure of hydroxyapatites (HAps); however, in this research, plant extract (<em>Aloe vera</em>) was chosen to control the shape of nano-crystalline HAps. This research focused on synthesizing rod-shaped hydroxyapatite using a non-toxic, environmentally friendly, low-cost, and widely available natural source. Hydrothermal technique was used to synthesize nano-hydroxyapatite (nHAp), where different volumes (0, 2.5, 5.0, and 10 mL) of plant extract were added to a water medium with raw materials [Ca(OH)<small><sub>2</sub></small> and H<small><sub>3</sub></small>PO<small><sub>4</sub></small>]. XRD, FESEM, XPS, FTIR, and optical bandgap energy calculations confirmed the formation of nHAp. Its texture coefficient and preference growth values showed that the (0 0 2) and (0 0 4) planes were the preferred growth direction when <em>Aloe vera</em> extract was used. Crystallite sizes were in the range of 30–72 nm, as per XRD data, and the 88–107 nm length and 31–38 nm width of rod-shaped particles was confirmed by FESEM data. Very low bandgap energies in the range of 3.56–3.81 eV were found for the synthesized nHAp. There were no significant differences in the binding energy according to XPS data, and the calculated as well as direct ratio of Ca/P and O/Ca confirmed the formation of similar nHAps.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 288-297"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00165f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Size-dependent applications of biomaterials are increasing day by day, and rod-shaped biomaterials are drawing researchers attention for their different enhanced properties. Different types of chemicals are used to modify the crystal structure of hydroxyapatites (HAps); however, in this research, plant extract (Aloe vera) was chosen to control the shape of nano-crystalline HAps. This research focused on synthesizing rod-shaped hydroxyapatite using a non-toxic, environmentally friendly, low-cost, and widely available natural source. Hydrothermal technique was used to synthesize nano-hydroxyapatite (nHAp), where different volumes (0, 2.5, 5.0, and 10 mL) of plant extract were added to a water medium with raw materials [Ca(OH)2 and H3PO4]. XRD, FESEM, XPS, FTIR, and optical bandgap energy calculations confirmed the formation of nHAp. Its texture coefficient and preference growth values showed that the (0 0 2) and (0 0 4) planes were the preferred growth direction when Aloe vera extract was used. Crystallite sizes were in the range of 30–72 nm, as per XRD data, and the 88–107 nm length and 31–38 nm width of rod-shaped particles was confirmed by FESEM data. Very low bandgap energies in the range of 3.56–3.81 eV were found for the synthesized nHAp. There were no significant differences in the binding energy according to XPS data, and the calculated as well as direct ratio of Ca/P and O/Ca confirmed the formation of similar nHAps.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信