Stable fabrication of internal micro-channels in polymers based on a thermal-electric coupling field

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Ziran Bao, Tongzhou Shen, Kai Lu and Linan Zhang
{"title":"Stable fabrication of internal micro-channels in polymers based on a thermal-electric coupling field","authors":"Ziran Bao, Tongzhou Shen, Kai Lu and Linan Zhang","doi":"10.1039/D4ME00171K","DOIUrl":null,"url":null,"abstract":"<p >The micro-channel structure in polymers has excellent properties and is widely used in biochemistry instruments, optical sensor devices and so on. At present, numerous challenges such as low surface quality and unstable formation are faced during the fabrication of internal polymer micro-channel structures, leading to functions that do not meet expectations. In this paper, a mathematical model for channel formation in polymers is established using phase field theory, and the deformation mechanism of the microstructure driven by surface energy was studied. Next, the micro-nano-structure evolution of the polymer was simulated, and the morphology of single-channel, double-channel and Z-shaped-channel structures was studied. Finally, a comparison test of the formed structure under the action of a single temperature field and thermal-electric coupling field was carried out, and experimental results were found to be consistent with simulation results.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 279-287"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00171k","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The micro-channel structure in polymers has excellent properties and is widely used in biochemistry instruments, optical sensor devices and so on. At present, numerous challenges such as low surface quality and unstable formation are faced during the fabrication of internal polymer micro-channel structures, leading to functions that do not meet expectations. In this paper, a mathematical model for channel formation in polymers is established using phase field theory, and the deformation mechanism of the microstructure driven by surface energy was studied. Next, the micro-nano-structure evolution of the polymer was simulated, and the morphology of single-channel, double-channel and Z-shaped-channel structures was studied. Finally, a comparison test of the formed structure under the action of a single temperature field and thermal-electric coupling field was carried out, and experimental results were found to be consistent with simulation results.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信