A bio-inspired approach to engineering water-responsive, mechanically-adaptive materials†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Daseul Jang, Yu-Tai Wong and LaShanda T. J. Korley
{"title":"A bio-inspired approach to engineering water-responsive, mechanically-adaptive materials†","authors":"Daseul Jang, Yu-Tai Wong and LaShanda T. J. Korley","doi":"10.1039/D4ME00177J","DOIUrl":null,"url":null,"abstract":"<p >Inspired by a diverse array of hierarchical structures and mechanical function in spider silk, we leverage building blocks that can form non-covalent interactions to develop mechanically-tunable and water-responsive composite materials <em>via</em> hydrogen bonding modulation. Specifically, self-assembling peptide blocks consisting of poly(β-benzyl-<small>L</small>-aspartate) (PBLA) are introduced into a hydrophilic polyurea system. Using these peptide–polyurea hybrids (PPUs) as a hierarchical matrix, cellulose nanocrystals (CNCs) are incorporated to diversify the self-assembled nanostructures of PPUs through matrix–filler interactions. Our findings reveal that higher PBLA content in the PPUs reduces the magnitude of the stiffness differential due to the physical crosslinking induced by the peptide blocks. Additionally, the inclusion of CNCs in the PPU matrix increases the storage modulus in the dry state <img> but also diminishes the wet-state modulus <img> due to the shift of physical associations from peptidic arrangements to PBLA–CNC interactions, resulting in variations in the morphology of the PPU/CNC nanocomposites. This molecular design strategy allows for the development of adaptable materials with a broad range of water-responsive storage modulus switching <img>, spanning from ∼70 MPa to ∼400 MPa. This investigation highlights the potential of harnessing peptide assembly and peptide–cellulose interactions to achieve mechanical enhancement and water-responsiveness, providing insights for engineering next-generation responsive materials.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 264-278"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/me/d4me00177j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00177j","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by a diverse array of hierarchical structures and mechanical function in spider silk, we leverage building blocks that can form non-covalent interactions to develop mechanically-tunable and water-responsive composite materials via hydrogen bonding modulation. Specifically, self-assembling peptide blocks consisting of poly(β-benzyl-L-aspartate) (PBLA) are introduced into a hydrophilic polyurea system. Using these peptide–polyurea hybrids (PPUs) as a hierarchical matrix, cellulose nanocrystals (CNCs) are incorporated to diversify the self-assembled nanostructures of PPUs through matrix–filler interactions. Our findings reveal that higher PBLA content in the PPUs reduces the magnitude of the stiffness differential due to the physical crosslinking induced by the peptide blocks. Additionally, the inclusion of CNCs in the PPU matrix increases the storage modulus in the dry state but also diminishes the wet-state modulus due to the shift of physical associations from peptidic arrangements to PBLA–CNC interactions, resulting in variations in the morphology of the PPU/CNC nanocomposites. This molecular design strategy allows for the development of adaptable materials with a broad range of water-responsive storage modulus switching , spanning from ∼70 MPa to ∼400 MPa. This investigation highlights the potential of harnessing peptide assembly and peptide–cellulose interactions to achieve mechanical enhancement and water-responsiveness, providing insights for engineering next-generation responsive materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信