The pivotal role of the carbonyl group in methoxy chalcones: comprehensive analyses of the structure and computational insights into binding affinity towards monoamine oxidase enzymes†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Keshav Kumar Harish, Hussien Ahmed Khamees, Keerthikumara Venkatesha, Omantheswara Nagaraja and Mahendra Madegowda
{"title":"The pivotal role of the carbonyl group in methoxy chalcones: comprehensive analyses of the structure and computational insights into binding affinity towards monoamine oxidase enzymes†","authors":"Keshav Kumar Harish, Hussien Ahmed Khamees, Keerthikumara Venkatesha, Omantheswara Nagaraja and Mahendra Madegowda","doi":"10.1039/D4ME00135D","DOIUrl":null,"url":null,"abstract":"<p >The present study explores the comprehensive investigations of two methoxy-oriented chalcone structures (HK1 and HK2), each featuring distinct halogen substituents (chlorine and bromine). The crystals of the derivatives were grown and confirmed <em>via</em> single-crystal X-ray diffraction (XRD), revealing that HK1 crystallizes in the orthorhombic system with the space group <em>Pbca</em>, while HK2 crystallizes in the monoclinic system with the space group <em>P</em>2<small><sub>1</sub></small>/<em>c</em>. Intermolecular interactions, such as hydrogen bonding, π–π stacking, and van der Waals forces, were examined for their role in molecular assembly. Hirshfeld surface analysis and enrichment ratio provided further insights into these intermolecular interactions within the lattice. Density functional theory (DFT) calculations using the B3LYP functional and 6-311++G (d,p) basis set was employed to explore the electronic structure and physicochemical properties. Quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analyses elucidated the topology of these compounds. <em>In silico</em> biological studies of the derivatives were also carried out, focusing on their inhibitory potential targeting monoamine oxidase (MAO-A and MAO-B) enzymes. Drug-likeness was evaluated through ADME-T profiling predictions, followed by molecular docking and dynamics simulations to determine the favorable binding configurations within the MAOs. Dynamics simulations over a 100 ns period confirmed the stability of the ligand–protein complexes. Overall, the present study offers a deeper understanding of the structural intricacies of the reported molecules by providing valuable insights into their chemical and biological properties through molecular interactions.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 236-263"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00135d","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the comprehensive investigations of two methoxy-oriented chalcone structures (HK1 and HK2), each featuring distinct halogen substituents (chlorine and bromine). The crystals of the derivatives were grown and confirmed via single-crystal X-ray diffraction (XRD), revealing that HK1 crystallizes in the orthorhombic system with the space group Pbca, while HK2 crystallizes in the monoclinic system with the space group P21/c. Intermolecular interactions, such as hydrogen bonding, π–π stacking, and van der Waals forces, were examined for their role in molecular assembly. Hirshfeld surface analysis and enrichment ratio provided further insights into these intermolecular interactions within the lattice. Density functional theory (DFT) calculations using the B3LYP functional and 6-311++G (d,p) basis set was employed to explore the electronic structure and physicochemical properties. Quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analyses elucidated the topology of these compounds. In silico biological studies of the derivatives were also carried out, focusing on their inhibitory potential targeting monoamine oxidase (MAO-A and MAO-B) enzymes. Drug-likeness was evaluated through ADME-T profiling predictions, followed by molecular docking and dynamics simulations to determine the favorable binding configurations within the MAOs. Dynamics simulations over a 100 ns period confirmed the stability of the ligand–protein complexes. Overall, the present study offers a deeper understanding of the structural intricacies of the reported molecules by providing valuable insights into their chemical and biological properties through molecular interactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信