Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Nooshin Yousefzadeh;Rahul Sengupta;Yashaswi Karnati;Anand Rangarajan;Sanjay Ranka
{"title":"Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation","authors":"Nooshin Yousefzadeh;Rahul Sengupta;Yashaswi Karnati;Anand Rangarajan;Sanjay Ranka","doi":"10.1109/TITS.2025.3546810","DOIUrl":null,"url":null,"abstract":"Traffic congestion poses significant economic, environmental, and social challenges. High-resolution loop detector data and signal state records from Automated Traffic Signal Performance Measures (ATSPM) offer new opportunities for traffic signal optimization at intersections. However, additional factors such as geometry, traffic volumes, Turning-Movement Counts (TMCs), and human driving behaviors complicate this task. Existing simulators (e.g., SUMO, Vissim) are computationally intensive, while machine learning models often lack lane-specific traffic flow estimation. To address these issues, we propose two computationally efficient Attentional Graph Auto-Encoder frameworks as “Digital Twins” for urban traffic intersections. Leveraging graph representations and Graph Attention Networks (GAT), our models capture lane-level traffic flow dynamics at entry and exit points while remaining agnostic to intersection topology and lane configurations. Trained on over 40,000 hours of realistic traffic simulations with affordable GPU parallelization, our framework produces fine-grained traffic flow time series. This output supports critical applications such as estimating Measures of Effectiveness (MOEs), scaling to urban freeway corridors, and integrating with signal optimization frameworks for improved traffic management.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"5082-5093"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10919173/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic congestion poses significant economic, environmental, and social challenges. High-resolution loop detector data and signal state records from Automated Traffic Signal Performance Measures (ATSPM) offer new opportunities for traffic signal optimization at intersections. However, additional factors such as geometry, traffic volumes, Turning-Movement Counts (TMCs), and human driving behaviors complicate this task. Existing simulators (e.g., SUMO, Vissim) are computationally intensive, while machine learning models often lack lane-specific traffic flow estimation. To address these issues, we propose two computationally efficient Attentional Graph Auto-Encoder frameworks as “Digital Twins” for urban traffic intersections. Leveraging graph representations and Graph Attention Networks (GAT), our models capture lane-level traffic flow dynamics at entry and exit points while remaining agnostic to intersection topology and lane configurations. Trained on over 40,000 hours of realistic traffic simulations with affordable GPU parallelization, our framework produces fine-grained traffic flow time series. This output supports critical applications such as estimating Measures of Effectiveness (MOEs), scaling to urban freeway corridors, and integrating with signal optimization frameworks for improved traffic management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信