GNSS Jammer Localization and Identification With Airborne Commercial GNSS Receivers

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Marco Spanghero;Filip Geib;Ronny Panier;Panos Papadimitratos
{"title":"GNSS Jammer Localization and Identification With Airborne Commercial GNSS Receivers","authors":"Marco Spanghero;Filip Geib;Ronny Panier;Panos Papadimitratos","doi":"10.1109/TIFS.2025.3550050","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite Systems (GNSS) are fundamental in ubiquitously providing position and time to a wide gamut of systems. Jamming remains a realistic threat in many deployment settings, civilian and tactical. Specifically, in drones sustained denial raises safety critical concerns. This work presents a strategy that allows detection, localization, and classification both in the frequency and time domain of interference signals harmful to navigation. A high-performance Vertical Take Off and Landing (VTOL) drone with a single antenna and a commercial GNSS receiver is used to geolocate and characterize RF emitters at long range, to infer the navigation impairment. Raw IQ baseband snapshots from the GNSS receiver make the application of spectral correlation methods possible without extra software-defined radio payload, paving the way to spectrum identification and monitoring in airborne platforms, aiming at RF situational awareness. Live testing at Jammertest, in Norway, with portable, commercially available GNSS multi-band jammers demonstrates the ability to detect, localize, and characterize harmful interference. Our system pinpointed the position with an error of a few meters of the transmitter and the extent of the affected area at long range, without entering the denied zone. Additionally, further spectral content extraction is used to accurately identify the jammer frequency, bandwidth, and modulation scheme based on spectral correlation techniques.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3550-3565"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10919159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919159/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Global Navigation Satellite Systems (GNSS) are fundamental in ubiquitously providing position and time to a wide gamut of systems. Jamming remains a realistic threat in many deployment settings, civilian and tactical. Specifically, in drones sustained denial raises safety critical concerns. This work presents a strategy that allows detection, localization, and classification both in the frequency and time domain of interference signals harmful to navigation. A high-performance Vertical Take Off and Landing (VTOL) drone with a single antenna and a commercial GNSS receiver is used to geolocate and characterize RF emitters at long range, to infer the navigation impairment. Raw IQ baseband snapshots from the GNSS receiver make the application of spectral correlation methods possible without extra software-defined radio payload, paving the way to spectrum identification and monitoring in airborne platforms, aiming at RF situational awareness. Live testing at Jammertest, in Norway, with portable, commercially available GNSS multi-band jammers demonstrates the ability to detect, localize, and characterize harmful interference. Our system pinpointed the position with an error of a few meters of the transmitter and the extent of the affected area at long range, without entering the denied zone. Additionally, further spectral content extraction is used to accurately identify the jammer frequency, bandwidth, and modulation scheme based on spectral correlation techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信