Elmer O. Hancco Catata;Marcelo Vinícius De Paula;Ernesto Ruppert Filho;Tárcio André Dos Santos Barros
{"title":"Energy-Efficient Direct Instantaneous Torque Control of Switched Reluctance Generator at Low Speeds","authors":"Elmer O. Hancco Catata;Marcelo Vinícius De Paula;Ernesto Ruppert Filho;Tárcio André Dos Santos Barros","doi":"10.1109/OAJPE.2025.3553408","DOIUrl":null,"url":null,"abstract":"An efficient switching method is proposed for Direct Instantaneous Torque Control (DITC) in Switched Reluctance Generators (SRG) operating at low speeds, aiming to enhance system efficiency and reduce torque ripple. In the traditional DITC strategy, the magnetization state in the outgoing phase is enabled at low operating speeds, leading to decreased efficiency and unnecessary torque ripple. The proposed DITC strategy improves efficiency at low speeds while maintaining low torque ripple levels. It prioritizes the freewheeling and demagnetization states during the outgoing period. When the back electromotive force (back EMF) is small, the magnetization state is disabled, using the freewheeling state to smoothly increase torque and the demagnetization state to decrease torque. The magnetization state is reintroduced as the back EMF increases. To implement the modified DITC, an artificial neural network is used to estimate electromagnetic torque. Experimental tests were conducted for both fixed and variable SRG speeds. The proposed method is compared with other methods in the literature. Experimental tests carried out at fixed and variable SRG speeds show that the proposed method significantly enhances efficiency by up to 20% and reduces torque ripple by up to 21% compared to existing methods.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"171-180"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10935298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient switching method is proposed for Direct Instantaneous Torque Control (DITC) in Switched Reluctance Generators (SRG) operating at low speeds, aiming to enhance system efficiency and reduce torque ripple. In the traditional DITC strategy, the magnetization state in the outgoing phase is enabled at low operating speeds, leading to decreased efficiency and unnecessary torque ripple. The proposed DITC strategy improves efficiency at low speeds while maintaining low torque ripple levels. It prioritizes the freewheeling and demagnetization states during the outgoing period. When the back electromotive force (back EMF) is small, the magnetization state is disabled, using the freewheeling state to smoothly increase torque and the demagnetization state to decrease torque. The magnetization state is reintroduced as the back EMF increases. To implement the modified DITC, an artificial neural network is used to estimate electromagnetic torque. Experimental tests were conducted for both fixed and variable SRG speeds. The proposed method is compared with other methods in the literature. Experimental tests carried out at fixed and variable SRG speeds show that the proposed method significantly enhances efficiency by up to 20% and reduces torque ripple by up to 21% compared to existing methods.