{"title":"A Cost-Aware Adaptive Bike Repositioning Agent Using Deep Reinforcement Learning","authors":"Alessandro Staffolani;Victor-Alexandru Darvariu;Paolo Bellavista;Mirco Musolesi","doi":"10.1109/TITS.2025.3535915","DOIUrl":null,"url":null,"abstract":"Bike Sharing Systems (BSS) represent a sustainable and efficient urban transportation solution. A major challenge in BSS is repositioning bikes to avoid shortage events when users encounter empty or full bike lockers. Existing algorithms unrealistically rely on precise demand forecasts and tend to overlook substantial operational costs associated with reallocations. This paper introduces a novel Cost-aware Adaptive Bike Repositioning Agent (CABRA), which harnesses advanced deep reinforcement learning techniques in dock-based BSS. By analyzing demand patterns, CABRA learns adaptive repositioning strategies aimed at reducing shortages and enhancing truck route planning efficiency, significantly lowering operational costs. We perform an extensive experimental evaluation of CABRA utilizing real-world data from Dublin, London, Paris, and New York. The reported results show that CABRA achieves operational efficiency that outperforms or matches very challenging baselines, obtaining a significant cost reduction. Its performance on the largest city comprising 1765 docking stations highlights the efficiency and scalability of the proposed solution even when applied to BSS with a great number of docking stations.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"4923-4933"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877698/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Bike Sharing Systems (BSS) represent a sustainable and efficient urban transportation solution. A major challenge in BSS is repositioning bikes to avoid shortage events when users encounter empty or full bike lockers. Existing algorithms unrealistically rely on precise demand forecasts and tend to overlook substantial operational costs associated with reallocations. This paper introduces a novel Cost-aware Adaptive Bike Repositioning Agent (CABRA), which harnesses advanced deep reinforcement learning techniques in dock-based BSS. By analyzing demand patterns, CABRA learns adaptive repositioning strategies aimed at reducing shortages and enhancing truck route planning efficiency, significantly lowering operational costs. We perform an extensive experimental evaluation of CABRA utilizing real-world data from Dublin, London, Paris, and New York. The reported results show that CABRA achieves operational efficiency that outperforms or matches very challenging baselines, obtaining a significant cost reduction. Its performance on the largest city comprising 1765 docking stations highlights the efficiency and scalability of the proposed solution even when applied to BSS with a great number of docking stations.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.