Game Theory-Based Harmonious Decision-Making for Autonomous Bus Lane Change

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Fan Guo;Xiao Han;Kang Song;Kaichen Jiang;Dezong Zhao;Jinbo Hao;Caimei Wang;Hui Xie
{"title":"Game Theory-Based Harmonious Decision-Making for Autonomous Bus Lane Change","authors":"Fan Guo;Xiao Han;Kang Song;Kaichen Jiang;Dezong Zhao;Jinbo Hao;Caimei Wang;Hui Xie","doi":"10.1109/TITS.2025.3533577","DOIUrl":null,"url":null,"abstract":"Blended traffic, comprising autonomous buses (ABs) and human-driven vehicles (HDVs), is becoming increasingly common, yet the lane change decision-making for ABs remains challenging due to complex interactions with heterogeneous HDVs. To address the challenge above, this paper proposes a game theory-based harmonious decision-making (GTHD) algorithm considering nuance of driving styles of HDVs, achieving human-like performance in interactions with HDVs. Technically, a game theoretic model of the GTHD uses predictions of the opposing vehicle’s motion and the information from preplanned trajectories. Besides, a prior estimation for driving styles is obtained utilizing clustering of historical data, and refined in real time through Bayesian estimation. Then, the driving style estimation is utilized to modify the game theoretic model. The modified model provides a closer depiction of the opponent’s preferences, meanwhile adjusts self-preferences to adapt to the opponent. The efficacy of GTHD is validated using a hardware and human in loop simulator and datasets in MLC scenarios. It is shown that the GTHD achieves human-like performance with 91.50%-98.50% accuracy compared with human bus driver under different conditions, better than several lane change models based on data driven methods. The code is open source and available at <uri>https://github.com/guofan999/GTHD</uri>.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"4934-4947"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10871183/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Blended traffic, comprising autonomous buses (ABs) and human-driven vehicles (HDVs), is becoming increasingly common, yet the lane change decision-making for ABs remains challenging due to complex interactions with heterogeneous HDVs. To address the challenge above, this paper proposes a game theory-based harmonious decision-making (GTHD) algorithm considering nuance of driving styles of HDVs, achieving human-like performance in interactions with HDVs. Technically, a game theoretic model of the GTHD uses predictions of the opposing vehicle’s motion and the information from preplanned trajectories. Besides, a prior estimation for driving styles is obtained utilizing clustering of historical data, and refined in real time through Bayesian estimation. Then, the driving style estimation is utilized to modify the game theoretic model. The modified model provides a closer depiction of the opponent’s preferences, meanwhile adjusts self-preferences to adapt to the opponent. The efficacy of GTHD is validated using a hardware and human in loop simulator and datasets in MLC scenarios. It is shown that the GTHD achieves human-like performance with 91.50%-98.50% accuracy compared with human bus driver under different conditions, better than several lane change models based on data driven methods. The code is open source and available at https://github.com/guofan999/GTHD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信