Feasibility Study of Location Authentication for IoT Data Using Power Grid Signatures

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mudi Zhang;Charana Sonnadara;Sahil Shah;Min Wu
{"title":"Feasibility Study of Location Authentication for IoT Data Using Power Grid Signatures","authors":"Mudi Zhang;Charana Sonnadara;Sahil Shah;Min Wu","doi":"10.1109/OJSP.2025.3530847","DOIUrl":null,"url":null,"abstract":"Ambient signatures related to the power grid offer an under-utilized opportunity to verify the time and location of sensing data collected by the Internet-of-Things (IoT). Such power signatures as the Electrical Network Frequency (ENF) have been used in multimedia forensics to answer questions about the time and location of audio-visual recordings. Going beyond multimedia data, this paper investigates a refined power signature of Electrical Network Voltage (ENV) for IoT sensing data and carries out a feasibility study of location verification for IoT data. ENV reflects the variations of the power system's supply voltage over time and is also present in the optical sensing data, akin to ENF. A physical model showing the presence of ENV in the optical sensing data is presented along with the corresponding signal processing mechanisms to estimate and utilize ENV signals from the power and optical sensing data as location stamps. Experiments are conducted in the State of Maryland of the United States to demonstrate the feasibility of using ENV signals for location authentication of IoT data.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"405-416"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843385/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient signatures related to the power grid offer an under-utilized opportunity to verify the time and location of sensing data collected by the Internet-of-Things (IoT). Such power signatures as the Electrical Network Frequency (ENF) have been used in multimedia forensics to answer questions about the time and location of audio-visual recordings. Going beyond multimedia data, this paper investigates a refined power signature of Electrical Network Voltage (ENV) for IoT sensing data and carries out a feasibility study of location verification for IoT data. ENV reflects the variations of the power system's supply voltage over time and is also present in the optical sensing data, akin to ENF. A physical model showing the presence of ENV in the optical sensing data is presented along with the corresponding signal processing mechanisms to estimate and utilize ENV signals from the power and optical sensing data as location stamps. Experiments are conducted in the State of Maryland of the United States to demonstrate the feasibility of using ENV signals for location authentication of IoT data.
基于电网签名的物联网数据位置认证可行性研究
与电网相关的环境特征为验证物联网(IoT)收集的传感数据的时间和位置提供了一个未充分利用的机会。像电子网络频率(ENF)这样的电力特征已经被用于多媒体取证,以回答有关视听记录的时间和地点的问题。超越多媒体数据,本文研究了物联网传感数据的电网电压(ENV)的精细功率签名,并对物联网数据的位置验证进行了可行性研究。ENV反映了电力系统供电电压随时间的变化,也出现在光学传感数据中,类似于ENF。提出了光感测数据中存在ENV的物理模型,以及相应的信号处理机制,以估计和利用来自功率和光感测数据的ENV信号作为定位戳。在美国马里兰州进行了实验,以证明使用ENV信号进行物联网数据位置认证的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信