Sanyan Zhang , Surong Chu , Yan Qiang , Juanjuan Zhao , Yan Wang , Xiao Wei
{"title":"Combating Medical Label Noise through more precise partition-correction and progressive hard-enhanced learning","authors":"Sanyan Zhang , Surong Chu , Yan Qiang , Juanjuan Zhao , Yan Wang , Xiao Wei","doi":"10.1016/j.cmpb.2025.108734","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Computer-aided diagnosis systems based on deep neural networks heavily rely on datasets with high-quality labels. However, manual annotation for lesion diagnosis relies on image features, often requiring professional experience and complex image analysis process. This inevitably introduces noisy labels, which can misguide the training of classification models. Our goal is to design an effective method to address the challenges posed by label noise in medical images.</div></div><div><h3>Methods:</h3><div>we propose a novel noise-tolerant medical image classification framework consisting of two phases: fore-training correction and progressive hard-sample enhanced learning. In the first phase, we design a dual-branch sample partition detection scheme that effectively classifies each instance into one of three subsets: clean, hard, or noisy. Simultaneously, we propose a hard-sample label refinement strategy based on class prototypes with confidence-perception weighting and an effective joint correction method for noisy samples, enabling the acquisition of higher-quality training data. In the second phase, we design a progressive hard-sample reinforcement learning method to enhance the model’s ability to learn discriminative feature representations. This approach accounts for sample difficulty and mitigates the effects of label noise in medical datasets.</div></div><div><h3>Results:</h3><div>Our framework achieves an accuracy of 82.39% on the pneumoconiosis dataset collected by our laboratory. On a five-class skin disease dataset with six different levels of label noise (0, 0.05, 0.1, 0.2, 0.3, and 0.4), the average accuracy over the last ten epochs reaches 88.51%, 86.64%, 85.02%, 83.01%, 81.95%, 77.89%, respectively; For binary polyp classification under noise rates of 0.2, 0.3, and 0.4, the average accuracy over the last ten epochs is 97.90%, 93.77%, 89.33%, respectively.</div></div><div><h3>Conclusions:</h3><div>The effectiveness of our proposed framework is demonstrated through its performance on three challenging datasets with both real and synthetic noise. Experimental results further demonstrate the robustness of our method across varying noise rates.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"265 ","pages":"Article 108734"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
Computer-aided diagnosis systems based on deep neural networks heavily rely on datasets with high-quality labels. However, manual annotation for lesion diagnosis relies on image features, often requiring professional experience and complex image analysis process. This inevitably introduces noisy labels, which can misguide the training of classification models. Our goal is to design an effective method to address the challenges posed by label noise in medical images.
Methods:
we propose a novel noise-tolerant medical image classification framework consisting of two phases: fore-training correction and progressive hard-sample enhanced learning. In the first phase, we design a dual-branch sample partition detection scheme that effectively classifies each instance into one of three subsets: clean, hard, or noisy. Simultaneously, we propose a hard-sample label refinement strategy based on class prototypes with confidence-perception weighting and an effective joint correction method for noisy samples, enabling the acquisition of higher-quality training data. In the second phase, we design a progressive hard-sample reinforcement learning method to enhance the model’s ability to learn discriminative feature representations. This approach accounts for sample difficulty and mitigates the effects of label noise in medical datasets.
Results:
Our framework achieves an accuracy of 82.39% on the pneumoconiosis dataset collected by our laboratory. On a five-class skin disease dataset with six different levels of label noise (0, 0.05, 0.1, 0.2, 0.3, and 0.4), the average accuracy over the last ten epochs reaches 88.51%, 86.64%, 85.02%, 83.01%, 81.95%, 77.89%, respectively; For binary polyp classification under noise rates of 0.2, 0.3, and 0.4, the average accuracy over the last ten epochs is 97.90%, 93.77%, 89.33%, respectively.
Conclusions:
The effectiveness of our proposed framework is demonstrated through its performance on three challenging datasets with both real and synthetic noise. Experimental results further demonstrate the robustness of our method across varying noise rates.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.