Robust moving horizon planning for multi-vehicles area coverage in uncertain environment using mixed-integer-programming

Mohamed Ibrahim
{"title":"Robust moving horizon planning for multi-vehicles area coverage in uncertain environment using mixed-integer-programming","authors":"Mohamed Ibrahim","doi":"10.1016/j.fraope.2025.100249","DOIUrl":null,"url":null,"abstract":"<div><div>The increased use of multi-vehicles raises concerns about safety and economic aspects in several applications. Therefore, this work proposes a moving horizon planning algorithm for covering unexplored regions using multi-vehicles in uncertain/dynamic environments. The proposed algorithm enables the vehicles to adapt online to changes in the environment despite wind disturbances and vehicle uncertainties. The proposed planning allows systematic consideration of vehicle dynamics and constraints, e.g., obstacle avoidance, for optimizing a performance index, e.g., uncovered area and energy consumption. The algorithm robustness is demonstrated through theoretical investigations and numerical simulations in various uncertain scenarios using different planning architectures, e.g., centralized, decentralized, and distributed. The distributed planning approach achieves the best performance in terms of the covering rate, robustness, and computation time.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100249"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increased use of multi-vehicles raises concerns about safety and economic aspects in several applications. Therefore, this work proposes a moving horizon planning algorithm for covering unexplored regions using multi-vehicles in uncertain/dynamic environments. The proposed algorithm enables the vehicles to adapt online to changes in the environment despite wind disturbances and vehicle uncertainties. The proposed planning allows systematic consideration of vehicle dynamics and constraints, e.g., obstacle avoidance, for optimizing a performance index, e.g., uncovered area and energy consumption. The algorithm robustness is demonstrated through theoretical investigations and numerical simulations in various uncertain scenarios using different planning architectures, e.g., centralized, decentralized, and distributed. The distributed planning approach achieves the best performance in terms of the covering rate, robustness, and computation time.
基于混合整数规划的不确定环境下多车辆区域覆盖鲁棒移动地平线规划
多车使用的增加在一些应用中引起了对安全和经济方面的关注。因此,本工作提出了一种移动地平线规划算法,用于在不确定/动态环境中使用多车辆覆盖未探索区域。提出的算法使车辆能够在线适应环境的变化,尽管风的干扰和车辆的不确定性。提出的规划允许系统地考虑车辆动力学和约束,例如避障,以优化性能指标,例如未覆盖面积和能耗。该算法的鲁棒性通过理论研究和数值模拟在各种不确定场景下使用不同的规划架构,如集中式,分散式和分布式。分布式规划方法在覆盖率、鲁棒性和计算时间方面具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信