Computational study on thiolated and functionalized graphene oxide for heavy metal recovery

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Corinna Lombardo, Giulia Varrica, Giuseppe Forte
{"title":"Computational study on thiolated and functionalized graphene oxide for heavy metal recovery","authors":"Corinna Lombardo,&nbsp;Giulia Varrica,&nbsp;Giuseppe Forte","doi":"10.1016/j.comptc.2025.115211","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating use of heavy metals in industrial, agricultural, and medical applications has amplified pollution challenges, necessitating innovative remediation strategies. This study investigates the potential of a hybrid graphene oxide/thiolated-poly(N-isopropylacrylamide) (GO/GOSH@PNM) system for the reversible, temperature-dependent removal of heavy metals, specifically Pd(II), Pb(II), and Cd(II), from aqueous environments. Molecular dynamics (MD) simulations reveal that below the lower critical solution temperature (LCST) of 32 °C, the PNM polymer adopts a hydrophilic coil configuration, enabling efficient coordination of metal cations via hydroxyl, thiol, and amide oxygen functional groups. Density functional theory (DFT) calculations corroborate these findings, highlighting favorable adsorption free energies and strong interactions between the polymer and metal ions at lower temperatures. Above 32 °C, the polymer transitions to a hydrophobic globular conformation, reducing cation affinity and facilitating their release. This temperature-induced binding and release mechanism allows for heavy metal recovery and the regeneration of the hybrid system. The GO surface demonstrates higher polymer affinity than the GOSH surface, likely due to its increased hydroxyl group density. These findings underline the potential of the GO/GOSH@PNM system for sustainable and efficient heavy metal remediation, with further optimization promising enhanced performance.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1248 ","pages":"Article 115211"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25001471","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating use of heavy metals in industrial, agricultural, and medical applications has amplified pollution challenges, necessitating innovative remediation strategies. This study investigates the potential of a hybrid graphene oxide/thiolated-poly(N-isopropylacrylamide) (GO/GOSH@PNM) system for the reversible, temperature-dependent removal of heavy metals, specifically Pd(II), Pb(II), and Cd(II), from aqueous environments. Molecular dynamics (MD) simulations reveal that below the lower critical solution temperature (LCST) of 32 °C, the PNM polymer adopts a hydrophilic coil configuration, enabling efficient coordination of metal cations via hydroxyl, thiol, and amide oxygen functional groups. Density functional theory (DFT) calculations corroborate these findings, highlighting favorable adsorption free energies and strong interactions between the polymer and metal ions at lower temperatures. Above 32 °C, the polymer transitions to a hydrophobic globular conformation, reducing cation affinity and facilitating their release. This temperature-induced binding and release mechanism allows for heavy metal recovery and the regeneration of the hybrid system. The GO surface demonstrates higher polymer affinity than the GOSH surface, likely due to its increased hydroxyl group density. These findings underline the potential of the GO/GOSH@PNM system for sustainable and efficient heavy metal remediation, with further optimization promising enhanced performance.

Abstract Image

重金属在工业、农业和医疗应用中的使用不断增加,加剧了污染挑战,因此需要创新的修复策略。本研究探讨了氧化石墨烯/硫醇化聚(N-异丙基丙烯酰胺)(GO/GOSH@PNM)混合系统在从水环境中可逆地、随温度变化地去除重金属(特别是钯(II)、铅(II)和镉(II))方面的潜力。分子动力学(MD)模拟显示,在 32 °C 的较低临界溶液温度(LCST)以下,PNM 聚合物采用亲水线圈构型,通过羟基、硫醇和酰胺氧官能团有效配位金属阳离子。密度泛函理论(DFT)计算证实了这些发现,强调了聚合物与金属离子在较低温度下的有利吸附自由能和强烈的相互作用。温度高于 32 ℃ 时,聚合物会转变为疏水的球状构象,从而降低阳离子的亲和力并促进阳离子的释放。这种温度诱导的结合和释放机制使重金属得以回收,混合系统得以再生。与 GOSH 表面相比,GO 表面具有更高的聚合物亲和力,这可能是由于其羟基密度增加所致。这些发现强调了 GO/GOSH@PNM 系统在可持续和高效重金属修复方面的潜力,进一步优化有望提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信