Understanding the cellular and molecular heterogeneity in colorectal cancer through the use of single-cell RNA sequencing

IF 5 2区 医学 Q2 Medicine
Yuemiao Chen, Jian Huang, Yufang Fan, Lifeng Huang, Xiaoping Cai
{"title":"Understanding the cellular and molecular heterogeneity in colorectal cancer through the use of single-cell RNA sequencing","authors":"Yuemiao Chen,&nbsp;Jian Huang,&nbsp;Yufang Fan,&nbsp;Lifeng Huang,&nbsp;Xiaoping Cai","doi":"10.1016/j.tranon.2025.102374","DOIUrl":null,"url":null,"abstract":"<div><div>The very prevalent nature, genetic variability, and intricate tumor microenvironment (TUME) of colorectal cancer (COREC) are its defining features. In order to better understand the molecular and cellular make-up of COREC, this work used single-cell RNA sequencing (SRNAS) to isolate and characterize important cell types as well as their interactions within the TUME. Our analysis of 51,204 cells yielded six distinct types: epithelial, fibroblast, endothelial, T&amp;NK, B, and myeloid. C3 B cells were shown to be the most active in immunological regulation, according to chemokine signaling study, which was one of seven clusters of B cells that were thoroughly subtyped. The examination of copy number variation (CONUV) revealed a great deal of genetic variability, especially in epithelial cells. We traced the activity of three key transcription factor clusters (M1, M2, and M3) across all B cell subtypes using transcription factor analysis. We created a predictive model that correctly sorts patients according to survival results by using marker genes from C3 B cells. In addition, the relationship between genetic changes and the immune system was better understood by tumor mutational burden (TUMUB) and immune infiltration studies. Our research sheds light on the genetic complexity and cellular variety of COREC, which in turn opens up new possibilities for targeted treatments and individualized approaches to patient care.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"55 ","pages":"Article 102374"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325001056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The very prevalent nature, genetic variability, and intricate tumor microenvironment (TUME) of colorectal cancer (COREC) are its defining features. In order to better understand the molecular and cellular make-up of COREC, this work used single-cell RNA sequencing (SRNAS) to isolate and characterize important cell types as well as their interactions within the TUME. Our analysis of 51,204 cells yielded six distinct types: epithelial, fibroblast, endothelial, T&NK, B, and myeloid. C3 B cells were shown to be the most active in immunological regulation, according to chemokine signaling study, which was one of seven clusters of B cells that were thoroughly subtyped. The examination of copy number variation (CONUV) revealed a great deal of genetic variability, especially in epithelial cells. We traced the activity of three key transcription factor clusters (M1, M2, and M3) across all B cell subtypes using transcription factor analysis. We created a predictive model that correctly sorts patients according to survival results by using marker genes from C3 B cells. In addition, the relationship between genetic changes and the immune system was better understood by tumor mutational burden (TUMUB) and immune infiltration studies. Our research sheds light on the genetic complexity and cellular variety of COREC, which in turn opens up new possibilities for targeted treatments and individualized approaches to patient care.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
2.00%
发文量
314
审稿时长
54 days
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信