Deep learning in crack detection: A comprehensive scientometric review

Yingjie Wu , Shaoqi Li , Jingqiu Li , Yanping Yu , Jianchun Li , Yancheng Li
{"title":"Deep learning in crack detection: A comprehensive scientometric review","authors":"Yingjie Wu ,&nbsp;Shaoqi Li ,&nbsp;Jingqiu Li ,&nbsp;Yanping Yu ,&nbsp;Jianchun Li ,&nbsp;Yancheng Li","doi":"10.1016/j.iintel.2025.100144","DOIUrl":null,"url":null,"abstract":"<div><div>Cracks represent one of the common forms of damage in concrete structures and pavements, leading to safety issues and increased maintenance costs. Therefore, timely crack detection is crucial for preventing further damage and ensuring the safety of these structures. Traditional manual inspection methods are limited by factors such as time consumption, subjectivity, and labor intensity. To address these challenges, deep learning-based crack detection technologies have emerged as promising solutions, demonstrating satisfactory performance and accuracy. However, the field still lacks comprehensive scientometric analyses and critical surveys of existing works, which are vital for identifying research gaps and guiding future studies. This paper conducts a bibliometric and critical analysis of the collected literature, providing novel insights into current research trends and identifying potential areas for future investigation. Analytical tools, including VOSviewer and CiteSpace, were employed for in-depth analysis and visualization. This study identifies key research gaps and proposes future directions, focusing on advancements in model generalization, computational efficiency, dataset standardization, and the practical application of crack detection methods.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 3","pages":"Article 100144"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cracks represent one of the common forms of damage in concrete structures and pavements, leading to safety issues and increased maintenance costs. Therefore, timely crack detection is crucial for preventing further damage and ensuring the safety of these structures. Traditional manual inspection methods are limited by factors such as time consumption, subjectivity, and labor intensity. To address these challenges, deep learning-based crack detection technologies have emerged as promising solutions, demonstrating satisfactory performance and accuracy. However, the field still lacks comprehensive scientometric analyses and critical surveys of existing works, which are vital for identifying research gaps and guiding future studies. This paper conducts a bibliometric and critical analysis of the collected literature, providing novel insights into current research trends and identifying potential areas for future investigation. Analytical tools, including VOSviewer and CiteSpace, were employed for in-depth analysis and visualization. This study identifies key research gaps and proposes future directions, focusing on advancements in model generalization, computational efficiency, dataset standardization, and the practical application of crack detection methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信