Kimball A. Milton , Nima Pourtolami , Gerard Kennedy
{"title":"Perspectives on quantum friction, self-propulsion, and self-torque","authors":"Kimball A. Milton , Nima Pourtolami , Gerard Kennedy","doi":"10.1016/j.physleta.2025.130475","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides an overview of the nonequilibrium fluctuational forces and torques acting on a body either in motion or at rest relative to another body or to the thermal vacuum blackbody radiation. We consider forces and torques beyond the usual static Casimir-Polder and Casimir forces and torques. For a moving body, a retarding force emerges, called quantum or Casimir friction, which in vacuum was first predicted by Einstein and Hopf in 1910. Nonreciprocity may allow a stationary body, out of thermal equilibrium with its environment, to experience a torque. Moreover, if a stationary reciprocal body is not in thermal equilibrium with the blackbody vacuum, a self-propulsive force or torque can appear, resulting in a potentially observable linear or angular terminal velocity, even after thermalization.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"545 ","pages":"Article 130475"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125002567","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper provides an overview of the nonequilibrium fluctuational forces and torques acting on a body either in motion or at rest relative to another body or to the thermal vacuum blackbody radiation. We consider forces and torques beyond the usual static Casimir-Polder and Casimir forces and torques. For a moving body, a retarding force emerges, called quantum or Casimir friction, which in vacuum was first predicted by Einstein and Hopf in 1910. Nonreciprocity may allow a stationary body, out of thermal equilibrium with its environment, to experience a torque. Moreover, if a stationary reciprocal body is not in thermal equilibrium with the blackbody vacuum, a self-propulsive force or torque can appear, resulting in a potentially observable linear or angular terminal velocity, even after thermalization.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.