Q-learning-driven multi-population cooperative evolutionary algorithm with local search for scheduling of network-shared manufacturing resources

IF 4.3 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Liping Xu , Tao Zhou , Kai Li , Jianfu Chen , Han Zhang
{"title":"Q-learning-driven multi-population cooperative evolutionary algorithm with local search for scheduling of network-shared manufacturing resources","authors":"Liping Xu ,&nbsp;Tao Zhou ,&nbsp;Kai Li ,&nbsp;Jianfu Chen ,&nbsp;Han Zhang","doi":"10.1016/j.cor.2025.107076","DOIUrl":null,"url":null,"abstract":"<div><div>The variability in the availability of network-shared manufacturing resources and the release times of orders pose challenges to the operational decision-making of industrial internet platforms. This paper addresses these characteristics by studying the identical parallel machine scheduling problem, aiming to minimize total weighted tardiness under constraints of arbitrary release times and multiple machine unavailability periods. To address this research problem, a decoding mechanism based on machine idle periods is first proposed, effectively solving the impact of machine unavailability periods on the scheduling scheme. Secondly, a multi-population cooperative evolutionary algorithm is designed in which the mechanisms of selection, crossover, mutation, and information exchange between populations are improved. The optimal scheduling properties of two jobs on the same machine and different machines are analyzed, resulting in the design of two local search mechanisms. Additionally, Q-learning is introduced to enhance the adaptability of algorithm parameters by dynamically adjusting them within the multi-population cooperative evolutionary algorithm, resulting in a Q-learning-driven multi-population cooperative evolutionary algorithm with local search (Q-MPCEA-LS). Finally, comparative experiments between the Q-MPCEA-LS algorithm and various metaheuristic algorithms are conducted. The experimental results show that, across all instances, the average relative error in the average value metric of the Q-MPCEA-LS algorithm is 40.0%, 0.1%, 44.2%, and 75.9% lower than that of Q-MPCEA-LS without local search, Q-MPCEA-LS without Q-learning-based dynamic parameter adjustment, the iterative hybrid metaheuristic algorithm, and the hybrid genetic immune algorithm, respectively. These results validate the effectiveness of the individual components and the overall effectiveness of the Q-MPCEA-LS algorithm.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"180 ","pages":"Article 107076"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825001042","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The variability in the availability of network-shared manufacturing resources and the release times of orders pose challenges to the operational decision-making of industrial internet platforms. This paper addresses these characteristics by studying the identical parallel machine scheduling problem, aiming to minimize total weighted tardiness under constraints of arbitrary release times and multiple machine unavailability periods. To address this research problem, a decoding mechanism based on machine idle periods is first proposed, effectively solving the impact of machine unavailability periods on the scheduling scheme. Secondly, a multi-population cooperative evolutionary algorithm is designed in which the mechanisms of selection, crossover, mutation, and information exchange between populations are improved. The optimal scheduling properties of two jobs on the same machine and different machines are analyzed, resulting in the design of two local search mechanisms. Additionally, Q-learning is introduced to enhance the adaptability of algorithm parameters by dynamically adjusting them within the multi-population cooperative evolutionary algorithm, resulting in a Q-learning-driven multi-population cooperative evolutionary algorithm with local search (Q-MPCEA-LS). Finally, comparative experiments between the Q-MPCEA-LS algorithm and various metaheuristic algorithms are conducted. The experimental results show that, across all instances, the average relative error in the average value metric of the Q-MPCEA-LS algorithm is 40.0%, 0.1%, 44.2%, and 75.9% lower than that of Q-MPCEA-LS without local search, Q-MPCEA-LS without Q-learning-based dynamic parameter adjustment, the iterative hybrid metaheuristic algorithm, and the hybrid genetic immune algorithm, respectively. These results validate the effectiveness of the individual components and the overall effectiveness of the Q-MPCEA-LS algorithm.
基于q学习驱动的多种群局部搜索协同进化算法的网络共享制造资源调度
网络共享制造资源可用性的多变性和订单释放时间的多变性对工业互联网平台的运营决策提出了挑战。本文通过研究同一并行机器调度问题来解决这些问题,在任意释放时间和多个机器不可用期约束下,以最小化总加权延迟为目标。针对这一研究问题,首次提出了一种基于机器空闲时间的解码机制,有效地解决了机器空闲时间对调度方案的影响。其次,设计了一种多种群合作进化算法,改进了种群间的选择、交叉、突变和信息交换机制;分析了同一机器和不同机器上两个作业的最优调度特性,设计了两种局部搜索机制。此外,在多种群协同进化算法中引入q学习,通过动态调整算法参数,增强算法参数的自适应性,形成了q学习驱动的多种群局部搜索协同进化算法(Q-MPCEA-LS)。最后,对Q-MPCEA-LS算法与各种元启发式算法进行了对比实验。实验结果表明,在所有实例中,Q-MPCEA-LS算法的平均值度量平均相对误差分别比不进行局部搜索的Q-MPCEA-LS、不进行基于q -学习的动态参数调整的Q-MPCEA-LS、迭代混合元启发式算法和混合遗传免疫算法低40.0%、0.1%、44.2%和75.9%。这些结果验证了单个分量的有效性和Q-MPCEA-LS算法的总体有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信