A novel approach based on clustering and optimized ensemble deep learning for energy consumption forecasting in Ethiopia

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
E. Tefera Habtemariam , M. Martínez-Ballesteros , A. Troncoso , F. Martínez-Álvarez
{"title":"A novel approach based on clustering and optimized ensemble deep learning for energy consumption forecasting in Ethiopia","authors":"E. Tefera Habtemariam ,&nbsp;M. Martínez-Ballesteros ,&nbsp;A. Troncoso ,&nbsp;F. Martínez-Álvarez","doi":"10.1016/j.neucom.2025.130027","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting energy consumption accurately is crucial for optimizing energy management strategies and achieving sustainability goals. Traditional methods often struggle with the complexity of energy consumption patterns, particularly in developing regions such as Ethiopia, where unique challenges exist. This study proposes an ensemble deep learning approach that integrates multiple models to enhance prediction accuracy. Additionally, as a previous step, a clustering process has been applied to discover different groups of customers. Our method combines deep learning architectures, including Gated Recurrent Units, Long Short-Term Memory, and Convolutional Neural Networks, within an optimized ensemble with weights computed with the Coronavirus Optimization Algorithm. This approach aims to leverage the strengths of each model to produce robust and reliable predictions. We demonstrate that our ensemble approach yields competitive results, outperforming individual models within the ensemble. By integrating diverse models, our framework captures nuanced patterns in energy consumption data more effectively, contributing to improved prediction accuracy. Furthermore, we validate the effectiveness of our approach using three distinct datasets from Ethiopia for three different customer clusters. These datasets represent different regions and consumption profiles within the country, ensuring the robustness and generalizability of our proposed methodology.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"637 ","pages":"Article 130027"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500699X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting energy consumption accurately is crucial for optimizing energy management strategies and achieving sustainability goals. Traditional methods often struggle with the complexity of energy consumption patterns, particularly in developing regions such as Ethiopia, where unique challenges exist. This study proposes an ensemble deep learning approach that integrates multiple models to enhance prediction accuracy. Additionally, as a previous step, a clustering process has been applied to discover different groups of customers. Our method combines deep learning architectures, including Gated Recurrent Units, Long Short-Term Memory, and Convolutional Neural Networks, within an optimized ensemble with weights computed with the Coronavirus Optimization Algorithm. This approach aims to leverage the strengths of each model to produce robust and reliable predictions. We demonstrate that our ensemble approach yields competitive results, outperforming individual models within the ensemble. By integrating diverse models, our framework captures nuanced patterns in energy consumption data more effectively, contributing to improved prediction accuracy. Furthermore, we validate the effectiveness of our approach using three distinct datasets from Ethiopia for three different customer clusters. These datasets represent different regions and consumption profiles within the country, ensuring the robustness and generalizability of our proposed methodology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信