Saidul Islam , Jamal Bentahar , Robin Cohen , Gaith Rjoub
{"title":"A multi-modal unsupervised machine learning approach for biomedical signal processing during cardiopulmonary resuscitation","authors":"Saidul Islam , Jamal Bentahar , Robin Cohen , Gaith Rjoub","doi":"10.1016/j.ins.2025.122114","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiopulmonary resuscitation (CPR) is a critical, life-saving intervention aimed at restoring blood circulation and breathing in individuals experiencing cardiac arrest or respiratory failure. Accurate and real-time analysis of biomedical signals during CPR is essential for monitoring and decision-making, from the pre-hospital stage to the intensive care unit (ICU). However, CPR signals are often corrupted by noise and artifacts, making precise interpretation challenging. Traditional denoising methods, such as filters, struggle to adapt to the varying and complex noise patterns present in CPR signals. Given the high-stakes nature of CPR, where rapid and accurate responses can determine survival, there is a pressing need for more robust and adaptive denoising techniques. In this context, an unsupervised machine learning (ML) methodology is particularly valuable, as it removes the dependence on labeled data, which can be scarce or impractical in emergency scenarios. This paper introduces a novel unsupervised ML approach for denoising CPR signals using a multi-modality framework, which leverages multiple signal sources to enhance the denoising process. The proposed approach not only improves noise reduction and signal fidelity but also preserves critical inter-signal correlations (0.9993) which is crucial for downstream tasks. Furthermore, it outperforms existing methods in an unsupervised context in terms of signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR), making it highly effective for real-time applications. The integration of multi-modality further enhances the system's adaptability to various biomedical signals beyond CPR, improving both automated CPR systems and clinical decision-making.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"712 ","pages":"Article 122114"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525002464","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiopulmonary resuscitation (CPR) is a critical, life-saving intervention aimed at restoring blood circulation and breathing in individuals experiencing cardiac arrest or respiratory failure. Accurate and real-time analysis of biomedical signals during CPR is essential for monitoring and decision-making, from the pre-hospital stage to the intensive care unit (ICU). However, CPR signals are often corrupted by noise and artifacts, making precise interpretation challenging. Traditional denoising methods, such as filters, struggle to adapt to the varying and complex noise patterns present in CPR signals. Given the high-stakes nature of CPR, where rapid and accurate responses can determine survival, there is a pressing need for more robust and adaptive denoising techniques. In this context, an unsupervised machine learning (ML) methodology is particularly valuable, as it removes the dependence on labeled data, which can be scarce or impractical in emergency scenarios. This paper introduces a novel unsupervised ML approach for denoising CPR signals using a multi-modality framework, which leverages multiple signal sources to enhance the denoising process. The proposed approach not only improves noise reduction and signal fidelity but also preserves critical inter-signal correlations (0.9993) which is crucial for downstream tasks. Furthermore, it outperforms existing methods in an unsupervised context in terms of signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR), making it highly effective for real-time applications. The integration of multi-modality further enhances the system's adaptability to various biomedical signals beyond CPR, improving both automated CPR systems and clinical decision-making.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.