Dolor R. Enarevba , Nebojsa I. Jaksic , Karl R. Haapala
{"title":"A comparative life cycle assessment of kraft lignin and hemp straw fillers to improve ductility of polylactide (PLA) 3D printed parts","authors":"Dolor R. Enarevba , Nebojsa I. Jaksic , Karl R. Haapala","doi":"10.1016/j.jmsy.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>This research is motivated by the increasing demand for bio-based materials, the recent growth of the U.S. hemp industry, and the broader trend of using sustainable filaments in additive manufacturing. This study presents a comparative life cycle assessment (LCA) of untreated hemp straw and kraft lignin as fillers for polylactic acid (PLA) 3D-printed tensile specimens to evaluate their environmental impacts. Both materials, being low-cost renewable bio-based fillers, can enhance elongation of PLA while reducing the environmental footprint of 3D-printed components. The environmental impacts of hemp straw-PLA and kraft lignin-PLA were assessed using several life cycle impact assessment (LCIA) methods, including ReCiPe 2016 Endpoint (H), Cumulative Energy Demand (CED), and IPCC GWP100. Hemp straw showed lower environmental impacts than kraft lignin across most categories, making it a more favorable option for eco-conscious prosumers. The ReCiPe 2016 results indicated that major impact categories for kraft lignin-PLA were fine particulate matter formation, global warming potential, and human toxicity, with filament production being the major contributor. For hemp straw-PLA, hemp straw pre-processing was the major contributor. The CED method revealed that nonrenewable fossil resources had the highest impact on both materials. IPCC GWP100 results aligned with CED, showing higher greenhouse gas emissions for kraft lignin-PLA, mainly due to fossil fuel use. Sensitivity analysis of transportation distances showed no significant differences in impact results, while alternative LCIA methods (TRACI and IMPACT World+) confirmed the consistency of the findings. To build upon this study, future work will explore the environmental performance of treated hemp materials as alternative fillers for 3D-printed components.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 479-486"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000767","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research is motivated by the increasing demand for bio-based materials, the recent growth of the U.S. hemp industry, and the broader trend of using sustainable filaments in additive manufacturing. This study presents a comparative life cycle assessment (LCA) of untreated hemp straw and kraft lignin as fillers for polylactic acid (PLA) 3D-printed tensile specimens to evaluate their environmental impacts. Both materials, being low-cost renewable bio-based fillers, can enhance elongation of PLA while reducing the environmental footprint of 3D-printed components. The environmental impacts of hemp straw-PLA and kraft lignin-PLA were assessed using several life cycle impact assessment (LCIA) methods, including ReCiPe 2016 Endpoint (H), Cumulative Energy Demand (CED), and IPCC GWP100. Hemp straw showed lower environmental impacts than kraft lignin across most categories, making it a more favorable option for eco-conscious prosumers. The ReCiPe 2016 results indicated that major impact categories for kraft lignin-PLA were fine particulate matter formation, global warming potential, and human toxicity, with filament production being the major contributor. For hemp straw-PLA, hemp straw pre-processing was the major contributor. The CED method revealed that nonrenewable fossil resources had the highest impact on both materials. IPCC GWP100 results aligned with CED, showing higher greenhouse gas emissions for kraft lignin-PLA, mainly due to fossil fuel use. Sensitivity analysis of transportation distances showed no significant differences in impact results, while alternative LCIA methods (TRACI and IMPACT World+) confirmed the consistency of the findings. To build upon this study, future work will explore the environmental performance of treated hemp materials as alternative fillers for 3D-printed components.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.