Mathias Öttl , Jana Steenpass , Frauke Wilm , Jingna Qiu , Matthias Rübner , Corinna Lang-Schwarz , Cecilia Taverna , Francesca Tava , Arndt Hartmann , Hanna Huebner , Matthias W. Beckmann , Peter A. Fasching , Andreas Maier , Ramona Erber , Katharina Breininger
{"title":"Fully automatic HER2 tissue segmentation for interpretable HER2 scoring","authors":"Mathias Öttl , Jana Steenpass , Frauke Wilm , Jingna Qiu , Matthias Rübner , Corinna Lang-Schwarz , Cecilia Taverna , Francesca Tava , Arndt Hartmann , Hanna Huebner , Matthias W. Beckmann , Peter A. Fasching , Andreas Maier , Ramona Erber , Katharina Breininger","doi":"10.1016/j.jpi.2025.100435","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is the most common cancer in women, with HER2 (human epidermal growth factor receptor 2) overexpression playing a critical role in regulating cell growth and division. HER2 status, assessed according to established scoring guidelines, offers important information for treatment selection. However, the complexity of the task leads to variability in human rater assessments. In this work, we propose a fully automated, interpretable HER2 scoring pipeline based on pixel-level semantic segmentations, designed to align with clinical guidelines. Using polygon annotations, our method balances annotation effort with the ability to capture fine-grained details and larger structures, such as non-invasive tumor tissue.</div><div>To enhance HER2 segmentation, we propose the use of a Wasserstein Dice loss to model class relationships, ensuring robust segmentation and HER2 scoring performance. Additionally, based on observations of pathologists' behavior in clinical practice, we propose a calibration step to the scoring rules, which positively impacts the accuracy and consistency of automated HER2 scoring. Our approach achieves an F1 score of 0.832 on HER2 scoring, demonstrating its effectiveness. This work establishes a potent segmentation pipeline that can be further leveraged to analyze HER2 expression in breast cancer tissue.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"17 ","pages":"Article 100435"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is the most common cancer in women, with HER2 (human epidermal growth factor receptor 2) overexpression playing a critical role in regulating cell growth and division. HER2 status, assessed according to established scoring guidelines, offers important information for treatment selection. However, the complexity of the task leads to variability in human rater assessments. In this work, we propose a fully automated, interpretable HER2 scoring pipeline based on pixel-level semantic segmentations, designed to align with clinical guidelines. Using polygon annotations, our method balances annotation effort with the ability to capture fine-grained details and larger structures, such as non-invasive tumor tissue.
To enhance HER2 segmentation, we propose the use of a Wasserstein Dice loss to model class relationships, ensuring robust segmentation and HER2 scoring performance. Additionally, based on observations of pathologists' behavior in clinical practice, we propose a calibration step to the scoring rules, which positively impacts the accuracy and consistency of automated HER2 scoring. Our approach achieves an F1 score of 0.832 on HER2 scoring, demonstrating its effectiveness. This work establishes a potent segmentation pipeline that can be further leveraged to analyze HER2 expression in breast cancer tissue.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.