{"title":"Zero-dynamics attack detection based on data association in feedback pathway","authors":"Zeyu Zhang , Hongran Li , Yuki Todo","doi":"10.1016/j.cogr.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the security of non-minimum phase systems, a typical kind of cyber-physical systems. Non-minimum phase systems are characterized by unstable zeros in their transfer functions, making them particularly susceptible to disturbances and attacks. The non-minimum phase systems are more vulnerable to zero-dynamics attack (ZDA) than minimum phase systems. ZDA is a stealthy attack strategy that exploits the internal dynamics of a system, remaining undetectable while causing gradual system destabilization. Recent cyber incidents have demonstrated the increasing risk of such hidden attacks in critical infrastructures, such as power grids and transportation systems. This paper first demonstrates that the existing ZDA has the limitation of falling into local convergence, and then proposes an enhanced zero-dynamics attack (EZDA), which overcomes local convergence by diverging system data. Furthermore, this paper presents an autoregressive model which can build the data association between the original data and the forged data. By observing the fluctuations in state values, the presented model can detect not only ZDA, but also EZDA. Finally, numerical simulations and an application example are provided to verify the theoretical results.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 126-139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the security of non-minimum phase systems, a typical kind of cyber-physical systems. Non-minimum phase systems are characterized by unstable zeros in their transfer functions, making them particularly susceptible to disturbances and attacks. The non-minimum phase systems are more vulnerable to zero-dynamics attack (ZDA) than minimum phase systems. ZDA is a stealthy attack strategy that exploits the internal dynamics of a system, remaining undetectable while causing gradual system destabilization. Recent cyber incidents have demonstrated the increasing risk of such hidden attacks in critical infrastructures, such as power grids and transportation systems. This paper first demonstrates that the existing ZDA has the limitation of falling into local convergence, and then proposes an enhanced zero-dynamics attack (EZDA), which overcomes local convergence by diverging system data. Furthermore, this paper presents an autoregressive model which can build the data association between the original data and the forged data. By observing the fluctuations in state values, the presented model can detect not only ZDA, but also EZDA. Finally, numerical simulations and an application example are provided to verify the theoretical results.