Zero-dynamics attack detection based on data association in feedback pathway

Zeyu Zhang , Hongran Li , Yuki Todo
{"title":"Zero-dynamics attack detection based on data association in feedback pathway","authors":"Zeyu Zhang ,&nbsp;Hongran Li ,&nbsp;Yuki Todo","doi":"10.1016/j.cogr.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the security of non-minimum phase systems, a typical kind of cyber-physical systems. Non-minimum phase systems are characterized by unstable zeros in their transfer functions, making them particularly susceptible to disturbances and attacks. The non-minimum phase systems are more vulnerable to zero-dynamics attack (ZDA) than minimum phase systems. ZDA is a stealthy attack strategy that exploits the internal dynamics of a system, remaining undetectable while causing gradual system destabilization. Recent cyber incidents have demonstrated the increasing risk of such hidden attacks in critical infrastructures, such as power grids and transportation systems. This paper first demonstrates that the existing ZDA has the limitation of falling into local convergence, and then proposes an enhanced zero-dynamics attack (EZDA), which overcomes local convergence by diverging system data. Furthermore, this paper presents an autoregressive model which can build the data association between the original data and the forged data. By observing the fluctuations in state values, the presented model can detect not only ZDA, but also EZDA. Finally, numerical simulations and an application example are provided to verify the theoretical results.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 126-139"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the security of non-minimum phase systems, a typical kind of cyber-physical systems. Non-minimum phase systems are characterized by unstable zeros in their transfer functions, making them particularly susceptible to disturbances and attacks. The non-minimum phase systems are more vulnerable to zero-dynamics attack (ZDA) than minimum phase systems. ZDA is a stealthy attack strategy that exploits the internal dynamics of a system, remaining undetectable while causing gradual system destabilization. Recent cyber incidents have demonstrated the increasing risk of such hidden attacks in critical infrastructures, such as power grids and transportation systems. This paper first demonstrates that the existing ZDA has the limitation of falling into local convergence, and then proposes an enhanced zero-dynamics attack (EZDA), which overcomes local convergence by diverging system data. Furthermore, this paper presents an autoregressive model which can build the data association between the original data and the forged data. By observing the fluctuations in state values, the presented model can detect not only ZDA, but also EZDA. Finally, numerical simulations and an application example are provided to verify the theoretical results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信