Role of myocardial ischemia components in overdrive pacing of spiral waves

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sergei F. Pravdin , Alexander V. Panfilov
{"title":"Role of myocardial ischemia components in overdrive pacing of spiral waves","authors":"Sergei F. Pravdin ,&nbsp;Alexander V. Panfilov","doi":"10.1016/j.chaos.2025.116332","DOIUrl":null,"url":null,"abstract":"<div><div>Dangerous cardiac arrhythmias occur often due to ischemic heart disease. One of the most important methods for removing an arrhythmia is low-voltage electrotherapy, in particular overdrive pacing, that is stimulation from an implanted cardioverter with a period slightly less than the arrhythmia period. The main aim of this paper is to study how ischemia can affect overdrive pacing of arrhythmias caused by rotating spiral waves. We performed simulations using the ten Tusscher–Panfilov 2006 model for human cardiac tissue and studied how specific components of ischemia, such as hyperkalemia, hypoxia and acidosis, affect the dynamics of spiral waves and overdrive pacing. The hyperkalemia increased the spiral wave period more than twofold and caused meandering. Hypoxia slightly decreased the period. Acidosis caused meandering and spontaneous drift, which can result in the disappearance of spiral waves. Overall, the ischemia increased the efficiency of overdrive pacing, an effect that was mainly due to hyperkalemia.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116332"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003455","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dangerous cardiac arrhythmias occur often due to ischemic heart disease. One of the most important methods for removing an arrhythmia is low-voltage electrotherapy, in particular overdrive pacing, that is stimulation from an implanted cardioverter with a period slightly less than the arrhythmia period. The main aim of this paper is to study how ischemia can affect overdrive pacing of arrhythmias caused by rotating spiral waves. We performed simulations using the ten Tusscher–Panfilov 2006 model for human cardiac tissue and studied how specific components of ischemia, such as hyperkalemia, hypoxia and acidosis, affect the dynamics of spiral waves and overdrive pacing. The hyperkalemia increased the spiral wave period more than twofold and caused meandering. Hypoxia slightly decreased the period. Acidosis caused meandering and spontaneous drift, which can result in the disappearance of spiral waves. Overall, the ischemia increased the efficiency of overdrive pacing, an effect that was mainly due to hyperkalemia.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信