{"title":"Delta-shock solution for the nonhomogeneous Euler equations of compressible fluid flow with Born–Infeld equation of state","authors":"Shiwei Li, Jiahui Yang","doi":"10.1016/j.chaos.2025.116336","DOIUrl":null,"url":null,"abstract":"<div><div>The Born–Infeld type fluid, which obeys the pressure–density relation where the pressure is positive, is introduced into the nonhomogeneous Euler equations of compressible fluid flow. It is discovered for the first time that, for the positive pressure, the delta-shock with Dirac delta function in density develops in the solutions, even though the considered system is strictly hyperbolic with two genuinely nonlinear characteristic fields. First, the Riemann problem for the considered system is solvable with five kinds of structures by variable substitution method. For the delta-shock, the generalized Rankine–Hugoniot relation and entropy condition are clarified. Then it is discovered that as <span><math><mrow><mi>A</mi><mo>→</mo><mn>0</mn></mrow></math></span>, the solution consisting of two shocks converges to the delta-shock solution of zero-pressure Euler equations with friction; the delta-shock solution converges to that of zero-pressure Euler equations with friction; the solution containing two rarefaction waves converges to the vacuum solution of zero-pressure Euler equations with friction. Finally, the theoretical analysis is validated by the numerical results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116336"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003492","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Born–Infeld type fluid, which obeys the pressure–density relation where the pressure is positive, is introduced into the nonhomogeneous Euler equations of compressible fluid flow. It is discovered for the first time that, for the positive pressure, the delta-shock with Dirac delta function in density develops in the solutions, even though the considered system is strictly hyperbolic with two genuinely nonlinear characteristic fields. First, the Riemann problem for the considered system is solvable with five kinds of structures by variable substitution method. For the delta-shock, the generalized Rankine–Hugoniot relation and entropy condition are clarified. Then it is discovered that as , the solution consisting of two shocks converges to the delta-shock solution of zero-pressure Euler equations with friction; the delta-shock solution converges to that of zero-pressure Euler equations with friction; the solution containing two rarefaction waves converges to the vacuum solution of zero-pressure Euler equations with friction. Finally, the theoretical analysis is validated by the numerical results.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.