Data analysis of dynamical system for the optimization of disease dynamics through Neural Networks Paradigm

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Aatif Ali , Mei Sun , Mohamed R. Ali
{"title":"Data analysis of dynamical system for the optimization of disease dynamics through Neural Networks Paradigm","authors":"Aatif Ali ,&nbsp;Mei Sun ,&nbsp;Mohamed R. Ali","doi":"10.1016/j.chaos.2025.116284","DOIUrl":null,"url":null,"abstract":"<div><div>Vaccine coverage and non-pharmaceutical interventions have great importance relative to public health in the current scenario of pandemic throughout the world. A compartmental model for assessing the vaccine and community contact rate (in light of social-distancing and isolation) coverage in symptomatic and asymptomatic public. In most biological phenomena, particularly infectious diseases, fractional models capture crossover behavior and provide deeper insight. Also, the disease informed neural network embedded with the proposed model to deduce the temporal evolution dynamics of the COVID-19 model. The Reproduction number determines the severity of disease computed by the next-generation approach. The mathematical model assesses the dynamics of Corona-virus based on biological parameters, which are estimated from recorded data by the least square curve technique. The proposed model shows precise predictions of the real cases. The COVID-19 data of Pakistan, suggest that the vaccine efficacy is found to be useful with adoption of moderately (50% reduction of baseline value) could prevent 70%–80% of the projected infected persons over 100 days. While the contact rates impact on epidemiological outcomes is highly nonlinear, which indicates the high value to eradicate the pandemic if the underlying contact rate is relatively low. Our study urge that the contact rates (social distancing and isolation etc.) and vaccine coverage with high efficacy has probably high value in curtailing the burden of the pandemic. Additionally, we discuss how neural networks may predict disease spread and do so with the robustness and effectiveness of neural networks. The deep learning method predicts the dynamics with forecast their progression and demonstrates the high potential in combination with compartmental model. Furthermore, the results demonstrate that neural networks outperform traditional approaches in forecasting complex disease dynamics, determining crucial thresholds, and refining suppression strategies, offering important public health insights. Additionally, this strategy opens the door for more extensive artificial intelligence integration in healthcare optimization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116284"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002978","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccine coverage and non-pharmaceutical interventions have great importance relative to public health in the current scenario of pandemic throughout the world. A compartmental model for assessing the vaccine and community contact rate (in light of social-distancing and isolation) coverage in symptomatic and asymptomatic public. In most biological phenomena, particularly infectious diseases, fractional models capture crossover behavior and provide deeper insight. Also, the disease informed neural network embedded with the proposed model to deduce the temporal evolution dynamics of the COVID-19 model. The Reproduction number determines the severity of disease computed by the next-generation approach. The mathematical model assesses the dynamics of Corona-virus based on biological parameters, which are estimated from recorded data by the least square curve technique. The proposed model shows precise predictions of the real cases. The COVID-19 data of Pakistan, suggest that the vaccine efficacy is found to be useful with adoption of moderately (50% reduction of baseline value) could prevent 70%–80% of the projected infected persons over 100 days. While the contact rates impact on epidemiological outcomes is highly nonlinear, which indicates the high value to eradicate the pandemic if the underlying contact rate is relatively low. Our study urge that the contact rates (social distancing and isolation etc.) and vaccine coverage with high efficacy has probably high value in curtailing the burden of the pandemic. Additionally, we discuss how neural networks may predict disease spread and do so with the robustness and effectiveness of neural networks. The deep learning method predicts the dynamics with forecast their progression and demonstrates the high potential in combination with compartmental model. Furthermore, the results demonstrate that neural networks outperform traditional approaches in forecasting complex disease dynamics, determining crucial thresholds, and refining suppression strategies, offering important public health insights. Additionally, this strategy opens the door for more extensive artificial intelligence integration in healthcare optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信