{"title":"Assessing earthquake risks to lifeline infrastructure systems in the United States","authors":"N. Simon Kwong , Kishor S. Jaiswal","doi":"10.1016/j.ijcip.2025.100758","DOIUrl":null,"url":null,"abstract":"<div><div>The security and economic stability of the United States rely heavily on robust lifeline infrastructure systems and yet the risks to such systems are seldom quantified at the national scale. For example, while earthquake risks to buildings in the United States have been investigated at the national scale regularly, such risks to gas pipelines have rarely been investigated nationally. In this paper, we use examples from two critical infrastructure sectors to demonstrate (1) the nature of earthquake risks to lifeline infrastructure systems, (2) complexities involved in regional seismic risk assessments, and (3) how such risks change with time. We found that bridge risks can be underestimated by at least 64 % when viewed from repair costs instead of traffic demands and that regional risks can be underestimated by 19 % when spatial correlations of ground motion are ignored. Further, exceedance of traffic demand can be 50 times more likely to occur when viewed at the regional scale than when viewed at an individual bridge. Similarly, exceedance of repairs can be 180 times more likely to occur when viewed at the pipeline network level than at a segment-specific level. Finally, sensitivity analyses with the 2018 and 2023 USGS National Seismic Hazard Models indicate an increase in bridge risk of at least 24 % and an increase in exposed gas pipeline mileage of 43 %. The evolution of risks, complexities involved in assessments, and limited resources jointly underscore the need for more routine updates to nationwide seismic risk assessments of lifeline systems in the United States.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"49 ","pages":"Article 100758"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000198","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The security and economic stability of the United States rely heavily on robust lifeline infrastructure systems and yet the risks to such systems are seldom quantified at the national scale. For example, while earthquake risks to buildings in the United States have been investigated at the national scale regularly, such risks to gas pipelines have rarely been investigated nationally. In this paper, we use examples from two critical infrastructure sectors to demonstrate (1) the nature of earthquake risks to lifeline infrastructure systems, (2) complexities involved in regional seismic risk assessments, and (3) how such risks change with time. We found that bridge risks can be underestimated by at least 64 % when viewed from repair costs instead of traffic demands and that regional risks can be underestimated by 19 % when spatial correlations of ground motion are ignored. Further, exceedance of traffic demand can be 50 times more likely to occur when viewed at the regional scale than when viewed at an individual bridge. Similarly, exceedance of repairs can be 180 times more likely to occur when viewed at the pipeline network level than at a segment-specific level. Finally, sensitivity analyses with the 2018 and 2023 USGS National Seismic Hazard Models indicate an increase in bridge risk of at least 24 % and an increase in exposed gas pipeline mileage of 43 %. The evolution of risks, complexities involved in assessments, and limited resources jointly underscore the need for more routine updates to nationwide seismic risk assessments of lifeline systems in the United States.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.