Neha Saroj , Pankaj Singh Dholaniya , Syed Baseeruddin Alvi , Divya Sridharan , Navisha Soni , Syed Abdullah Ashraf , Ayza Choudhry , Yusuf Ali Ashraf , Sarah Kathleen Mikula , Dinender Kumar Singla , Mahmood Khan
{"title":"SiRNA-mediated knockdown of TOP2B protects hiPSC-derived cardiomyocytes from doxorubicin-induced toxicity","authors":"Neha Saroj , Pankaj Singh Dholaniya , Syed Baseeruddin Alvi , Divya Sridharan , Navisha Soni , Syed Abdullah Ashraf , Ayza Choudhry , Yusuf Ali Ashraf , Sarah Kathleen Mikula , Dinender Kumar Singla , Mahmood Khan","doi":"10.1016/j.lfs.2025.123595","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Doxorubicin (Dox) is a potent chemotherapeutic agent, but its use is limited by cardiotoxicity, primarily due to the disruption of Topoisomerase-2 beta (TOP2B) activity. Dexrazoxane (Dex), an FDA-approved cardioprotective drug, alleviates Dox-induced toxicity but lacks heart-specific targeting. This study investigates siRNA-mediated TOP2B knockdown as a more targeted strategy to protect cardiomyocytes from Dox-induced damage.</div></div><div><h3>Materials and methods</h3><div>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with siRNA to knock down TOP2B and were then exposed to Dox. We compared the cardioprotective effects of siRNA-mediated knockdown to Dex treatment using cell viability, cell toxicity assay and electrophysiological evaluation was performed using a multielectrode array (MEA).</div></div><div><h3>Key findings</h3><div>Our results demonstrate that TOP2B silencing significantly decreases apoptosis and improved cell viability, as compared to the Dex treatment. Additionally, electrophysiological assays using a Multielectrode Array (MEA) demonstrated enhanced contractility and conductivity in siRNA-treated hiPSC-CMs. Furthermore, transmission electron microscopy (TEM) data revealed that TOP2B knockdown preserves mitochondrial morphology and sarcomere structure, compared to Dox and Dex-treated groups.</div></div><div><h3>Significance</h3><div>These findings suggest that siRNA-mediated TOP2B inhibition could provide a safer, more specific approach to mitigate Dox-induced cardiotoxicity.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"371 ","pages":"Article 123595"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Doxorubicin (Dox) is a potent chemotherapeutic agent, but its use is limited by cardiotoxicity, primarily due to the disruption of Topoisomerase-2 beta (TOP2B) activity. Dexrazoxane (Dex), an FDA-approved cardioprotective drug, alleviates Dox-induced toxicity but lacks heart-specific targeting. This study investigates siRNA-mediated TOP2B knockdown as a more targeted strategy to protect cardiomyocytes from Dox-induced damage.
Materials and methods
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with siRNA to knock down TOP2B and were then exposed to Dox. We compared the cardioprotective effects of siRNA-mediated knockdown to Dex treatment using cell viability, cell toxicity assay and electrophysiological evaluation was performed using a multielectrode array (MEA).
Key findings
Our results demonstrate that TOP2B silencing significantly decreases apoptosis and improved cell viability, as compared to the Dex treatment. Additionally, electrophysiological assays using a Multielectrode Array (MEA) demonstrated enhanced contractility and conductivity in siRNA-treated hiPSC-CMs. Furthermore, transmission electron microscopy (TEM) data revealed that TOP2B knockdown preserves mitochondrial morphology and sarcomere structure, compared to Dox and Dex-treated groups.
Significance
These findings suggest that siRNA-mediated TOP2B inhibition could provide a safer, more specific approach to mitigate Dox-induced cardiotoxicity.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.