Half-hourly electricity price prediction model with explainable-decomposition hybrid deep learning approach

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sujan Ghimire , Ravinesh C. Deo , Konstantin Hopf , Hangyue Liu , David Casillas-Pérez , Andreas Helwig , Salvin S. Prasad , Jorge Pérez-Aracil , Prabal Datta Barua , Sancho Salcedo-Sanz
{"title":"Half-hourly electricity price prediction model with explainable-decomposition hybrid deep learning approach","authors":"Sujan Ghimire ,&nbsp;Ravinesh C. Deo ,&nbsp;Konstantin Hopf ,&nbsp;Hangyue Liu ,&nbsp;David Casillas-Pérez ,&nbsp;Andreas Helwig ,&nbsp;Salvin S. Prasad ,&nbsp;Jorge Pérez-Aracil ,&nbsp;Prabal Datta Barua ,&nbsp;Sancho Salcedo-Sanz","doi":"10.1016/j.egyai.2025.100492","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of electricity price (<span><math><mrow><mi>E</mi><mi>P</mi></mrow></math></span>) is crucial for energy utilities and grid operators for enhancing the energy trading, grid stability studies, resource allocations and pricing strategies, thereby improving the overall grid reliability, efficiency, and cost-effectiveness. This study introduces a novel D3Net model for half-hourly <span><math><mrow><mi>E</mi><mi>P</mi></mrow></math></span> prediction, integrating Seasonal-Trend decomposition using LOESS (STL) and Variational Mode Decomposition (VMD) with Multi-Layer Perceptron (MLP), Random Forest Regression (RFR), and Tabular Neural Network (TabNet). The methodology involves applying STL to the <span><math><mrow><mi>E</mi><mi>P</mi></mrow></math></span> time-series to extract trend, seasonal, and residual components. The trend is predicted using an MLP model, the seasonal component is further decomposed with VMD into 20 Variational Mode Functions (VMFs) and predicted using an RFR model, and the residual component is decomposed with VMD and predicted using the TabNet model. Input features are identified using the Partial Autocorrelation Function , and models are optimized using the Optuna algorithm. The final prediction combines the trend, seasonal, and residual components’ predictions. Explainable Artificial Intelligence (<em>xAI</em>) methods were used to enhance model interpretability and trustworthiness, with optimization via the Optuna algorithm. Comparative analysis with seven standalone and seven decomposition-based models confirmed the superior performance and statistical significance of the D3Net model. The D3Net achieved the highest global performance indicator for South Australia (<span><math><mrow><mi>G</mi><mi>P</mi><mi>I</mi><mo>≈</mo><mn>11</mn><mo>.</mo><mn>068</mn></mrow></math></span>) and Tasmania (<span><math><mrow><mi>G</mi><mi>P</mi><mi>I</mi><mo>≈</mo><mn>12</mn><mo>.</mo><mn>206</mn></mrow></math></span>). These results validate the efficacy and statistical significance of the D3Net model, demonstrating the viability of integrating STL and VMD decomposition approaches with MLP, RFR, and TabNet for <span><math><mrow><mi>E</mi><mi>P</mi></mrow></math></span> prediction.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100492"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of electricity price (EP) is crucial for energy utilities and grid operators for enhancing the energy trading, grid stability studies, resource allocations and pricing strategies, thereby improving the overall grid reliability, efficiency, and cost-effectiveness. This study introduces a novel D3Net model for half-hourly EP prediction, integrating Seasonal-Trend decomposition using LOESS (STL) and Variational Mode Decomposition (VMD) with Multi-Layer Perceptron (MLP), Random Forest Regression (RFR), and Tabular Neural Network (TabNet). The methodology involves applying STL to the EP time-series to extract trend, seasonal, and residual components. The trend is predicted using an MLP model, the seasonal component is further decomposed with VMD into 20 Variational Mode Functions (VMFs) and predicted using an RFR model, and the residual component is decomposed with VMD and predicted using the TabNet model. Input features are identified using the Partial Autocorrelation Function , and models are optimized using the Optuna algorithm. The final prediction combines the trend, seasonal, and residual components’ predictions. Explainable Artificial Intelligence (xAI) methods were used to enhance model interpretability and trustworthiness, with optimization via the Optuna algorithm. Comparative analysis with seven standalone and seven decomposition-based models confirmed the superior performance and statistical significance of the D3Net model. The D3Net achieved the highest global performance indicator for South Australia (GPI11.068) and Tasmania (GPI12.206). These results validate the efficacy and statistical significance of the D3Net model, demonstrating the viability of integrating STL and VMD decomposition approaches with MLP, RFR, and TabNet for EP prediction.

Abstract Image

基于可解释分解混合深度学习方法的半小时电价预测模型
准确的电价预测对于能源公司和电网运营商加强能源交易、电网稳定性研究、资源分配和定价策略,从而提高电网的整体可靠性、效率和成本效益至关重要。本文提出了一种新的D3Net半小时EP预测模型,该模型将季节性趋势分解(STL)和变分模态分解(VMD)与多层感知器(MLP)、随机森林回归(RFR)和表格神经网络(TabNet)相结合,用于半小时EP预测。该方法包括将STL应用于EP时间序列以提取趋势、季节和剩余成分。利用MLP模型对季节分量进行预测,利用变分模态函数(VMD)将季节分量进一步分解为20个变分模态函数(vmf),利用RFR模型进行预测,利用TabNet模型对残差分量进行分解和预测。使用部分自相关函数识别输入特征,并使用Optuna算法对模型进行优化。最后的预测结合了趋势、季节和剩余成分的预测。采用可解释人工智能(xAI)方法增强模型可解释性和可信度,并通过Optuna算法进行优化。通过与7个独立模型和7个分解模型的对比分析,证实了D3Net模型的优越性能和统计学意义。D3Net在南澳大利亚州(GPI≈11.068)和塔斯马尼亚州(GPI≈12.206)取得了最高的全球绩效指标。这些结果验证了D3Net模型的有效性和统计学意义,证明了将STL和VMD分解方法与MLP、RFR和TabNet相结合进行EP预测的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信