LC-LLM: Explainable lane-change intention and trajectory predictions with Large Language Models

IF 12.5 Q1 TRANSPORTATION
Mingxing Peng , Xusen Guo , Xianda Chen , Kehua Chen , Meixin Zhu , Long Chen , Fei-Yue Wang
{"title":"LC-LLM: Explainable lane-change intention and trajectory predictions with Large Language Models","authors":"Mingxing Peng ,&nbsp;Xusen Guo ,&nbsp;Xianda Chen ,&nbsp;Kehua Chen ,&nbsp;Meixin Zhu ,&nbsp;Long Chen ,&nbsp;Fei-Yue Wang","doi":"10.1016/j.commtr.2025.100170","DOIUrl":null,"url":null,"abstract":"<div><div>To ensure safe driving in dynamic environments, autonomous vehicles should possess the capability to accurately predict lane change intentions of surrounding vehicles in advance and forecast their future trajectories. Existing motion prediction approaches have ample room for improvement, particularly in terms of long-term prediction accuracy and interpretability. In this study, we address these challenges by proposing a Lane Change-Large Language Model (LC-LLM), an explainable lane change prediction model that leverages the strong reasoning capabilities and self explanation abilities of Large Language Models (LLMs). Essentially, we reformulate the lane change prediction task as a language modeling problem, processing heterogeneous driving scenario information as natural language prompts for LLMs and employing supervised fine-tuning to tailor LLMs specifically for lane change prediction task. Additionally, we finetune the Chain-of-Thought (CoT) reasoning to improve prediction transparency and reliability, and include explanatory requirements in the prompts during the inference stage. Therefore, our LC-LLM not only predicts lane change intentions and trajectories but also provides CoT reasoning and explanations for its predictions, enhancing its interpretability. Extensive experiments based on the large-scale highD dataset demonstrate the superior performance and interpretability of our LC-LLM in lane change prediction task. To the best of our knowledge, this is the first attempt to utilize LLMs for predicting lane change behavior. Our study shows that LLMs can effectively encode comprehensive interaction information for understanding driving behavior.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100170"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure safe driving in dynamic environments, autonomous vehicles should possess the capability to accurately predict lane change intentions of surrounding vehicles in advance and forecast their future trajectories. Existing motion prediction approaches have ample room for improvement, particularly in terms of long-term prediction accuracy and interpretability. In this study, we address these challenges by proposing a Lane Change-Large Language Model (LC-LLM), an explainable lane change prediction model that leverages the strong reasoning capabilities and self explanation abilities of Large Language Models (LLMs). Essentially, we reformulate the lane change prediction task as a language modeling problem, processing heterogeneous driving scenario information as natural language prompts for LLMs and employing supervised fine-tuning to tailor LLMs specifically for lane change prediction task. Additionally, we finetune the Chain-of-Thought (CoT) reasoning to improve prediction transparency and reliability, and include explanatory requirements in the prompts during the inference stage. Therefore, our LC-LLM not only predicts lane change intentions and trajectories but also provides CoT reasoning and explanations for its predictions, enhancing its interpretability. Extensive experiments based on the large-scale highD dataset demonstrate the superior performance and interpretability of our LC-LLM in lane change prediction task. To the best of our knowledge, this is the first attempt to utilize LLMs for predicting lane change behavior. Our study shows that LLMs can effectively encode comprehensive interaction information for understanding driving behavior.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信