{"title":"The generalized energy-aware flexible job shop scheduling model: A constraint programming approach","authors":"Hajo Terbrack , Thorsten Claus","doi":"10.1016/j.cie.2025.111065","DOIUrl":null,"url":null,"abstract":"<div><div>Taking up the ongoing shift towards green production, this article addresses energy-oriented flexible job shop scheduling. Existing approaches mainly focus on single objectives in terms of energy utilization such as minimizing energy consumption. However, production control can affect multiple energy-related criteria. Therefore, we propose a flexible job shop scheduling model to minimize real-time pricing-related energy costs, peak demand and energy-related emissions. Motivated by the reported preeminence of Constraint Programming (CP) for a variety of scheduling problems, we extend a CP formulation for our study. To evaluate potential contradictory between energy objectives, we present nine objective functions by means of different lexicographic orders. In addition, we enhance the proposed scheduling model to account for sequence-dependent setup and due dates. To analyze and compare the effectiveness of the different model formulations, we present computational experiments for 20 small-, medium- and large-sized problem instances. Our study indicates that productivity can be maximized while, on average, energy costs are reduced by 5.3%, peak demand by 11.8%, emissions by 8.3% compared to traditional job scheduling. However, partly conflicting objectives require the decision maker to select the objective function most suitable to the individual needs. Including setup effort and due date compliance into energy-aware scheduling is possible and needed to make the concept of energy-aware scheduling applicable to industrial practice. We show that the additional aspects limit the potential improvement. Hence, it is crucial to understand such complex scheduling systems combining energy awareness, setup and due date compliance.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"204 ","pages":"Article 111065"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225002116","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Taking up the ongoing shift towards green production, this article addresses energy-oriented flexible job shop scheduling. Existing approaches mainly focus on single objectives in terms of energy utilization such as minimizing energy consumption. However, production control can affect multiple energy-related criteria. Therefore, we propose a flexible job shop scheduling model to minimize real-time pricing-related energy costs, peak demand and energy-related emissions. Motivated by the reported preeminence of Constraint Programming (CP) for a variety of scheduling problems, we extend a CP formulation for our study. To evaluate potential contradictory between energy objectives, we present nine objective functions by means of different lexicographic orders. In addition, we enhance the proposed scheduling model to account for sequence-dependent setup and due dates. To analyze and compare the effectiveness of the different model formulations, we present computational experiments for 20 small-, medium- and large-sized problem instances. Our study indicates that productivity can be maximized while, on average, energy costs are reduced by 5.3%, peak demand by 11.8%, emissions by 8.3% compared to traditional job scheduling. However, partly conflicting objectives require the decision maker to select the objective function most suitable to the individual needs. Including setup effort and due date compliance into energy-aware scheduling is possible and needed to make the concept of energy-aware scheduling applicable to industrial practice. We show that the additional aspects limit the potential improvement. Hence, it is crucial to understand such complex scheduling systems combining energy awareness, setup and due date compliance.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.