Efficient regularized estimation of graphical proportional hazards model with interval-censored data

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Huimin Lu , Yilong Wang , Heming Bing , Shuying Wang , Niya Li
{"title":"Efficient regularized estimation of graphical proportional hazards model with interval-censored data","authors":"Huimin Lu ,&nbsp;Yilong Wang ,&nbsp;Heming Bing ,&nbsp;Shuying Wang ,&nbsp;Niya Li","doi":"10.1016/j.csda.2025.108178","DOIUrl":null,"url":null,"abstract":"<div><div>Variable selection is discussed in many cases in survival analysis. In particular, the analysis of using proportional hazards (PH) models to deal with censored survival data has established a large amount of literature. Based on interval-censored data, this paper discusses the situation of complex network structures existing in covariates. To address the issue, a more flexible and versatile PH model has been developed by combining probabilistic graphical models with PH models, to describe the correlation between covariates. Based on the block coordinate descent method, a penalized estimation method is proposed, which can simultaneously perform variable selection and parameter estimation. The effectiveness of the proposed model and its parameter estimation method are evaluated through simulation studies and the analysis of clinical trial data related to Alzheimer's disease, confirming the reliability and accuracy of the proposed model and method.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108178"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Variable selection is discussed in many cases in survival analysis. In particular, the analysis of using proportional hazards (PH) models to deal with censored survival data has established a large amount of literature. Based on interval-censored data, this paper discusses the situation of complex network structures existing in covariates. To address the issue, a more flexible and versatile PH model has been developed by combining probabilistic graphical models with PH models, to describe the correlation between covariates. Based on the block coordinate descent method, a penalized estimation method is proposed, which can simultaneously perform variable selection and parameter estimation. The effectiveness of the proposed model and its parameter estimation method are evaluated through simulation studies and the analysis of clinical trial data related to Alzheimer's disease, confirming the reliability and accuracy of the proposed model and method.
区间截尾数据下图形比例风险模型的有效正则化估计
在生存分析中,很多情况下都要讨论变量选择。特别是,使用比例风险(PH)模型处理审查生存数据的分析已经建立了大量的文献。基于区间截尾数据,讨论了协变量中存在复杂网络结构的情况。为了解决这个问题,通过将概率图模型与PH模型相结合,开发了一个更灵活、更通用的PH模型,以描述协变量之间的相关性。在块坐标下降法的基础上,提出了一种同时进行变量选择和参数估计的惩罚估计方法。通过仿真研究和对阿尔茨海默病相关临床试验数据的分析,对所提模型及其参数估计方法的有效性进行了评价,证实了所提模型和方法的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信