Huimin Lu , Yilong Wang , Heming Bing , Shuying Wang , Niya Li
{"title":"Efficient regularized estimation of graphical proportional hazards model with interval-censored data","authors":"Huimin Lu , Yilong Wang , Heming Bing , Shuying Wang , Niya Li","doi":"10.1016/j.csda.2025.108178","DOIUrl":null,"url":null,"abstract":"<div><div>Variable selection is discussed in many cases in survival analysis. In particular, the analysis of using proportional hazards (PH) models to deal with censored survival data has established a large amount of literature. Based on interval-censored data, this paper discusses the situation of complex network structures existing in covariates. To address the issue, a more flexible and versatile PH model has been developed by combining probabilistic graphical models with PH models, to describe the correlation between covariates. Based on the block coordinate descent method, a penalized estimation method is proposed, which can simultaneously perform variable selection and parameter estimation. The effectiveness of the proposed model and its parameter estimation method are evaluated through simulation studies and the analysis of clinical trial data related to Alzheimer's disease, confirming the reliability and accuracy of the proposed model and method.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108178"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Variable selection is discussed in many cases in survival analysis. In particular, the analysis of using proportional hazards (PH) models to deal with censored survival data has established a large amount of literature. Based on interval-censored data, this paper discusses the situation of complex network structures existing in covariates. To address the issue, a more flexible and versatile PH model has been developed by combining probabilistic graphical models with PH models, to describe the correlation between covariates. Based on the block coordinate descent method, a penalized estimation method is proposed, which can simultaneously perform variable selection and parameter estimation. The effectiveness of the proposed model and its parameter estimation method are evaluated through simulation studies and the analysis of clinical trial data related to Alzheimer's disease, confirming the reliability and accuracy of the proposed model and method.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]