{"title":"Discretization: Privacy-preserving data publishing for causal discovery","authors":"Youngmin Ahn , Woongjoon Park , Gunwoong Park","doi":"10.1016/j.csda.2025.108174","DOIUrl":null,"url":null,"abstract":"<div><div>As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108174"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]