Discretization: Privacy-preserving data publishing for causal discovery

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Youngmin Ahn , Woongjoon Park , Gunwoong Park
{"title":"Discretization: Privacy-preserving data publishing for causal discovery","authors":"Youngmin Ahn ,&nbsp;Woongjoon Park ,&nbsp;Gunwoong Park","doi":"10.1016/j.csda.2025.108174","DOIUrl":null,"url":null,"abstract":"<div><div>As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108174"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

As the importance of data privacy continues to grow, data masking has emerged as a crucial method. Notably, data masking techniques aim to protect individual privacy, while enabling data analysts to derive meaningful statistical results, such as the identification of directional or causal relationships between variables. Hence, this study demonstrates the advantages of a quantile-based discretization for protecting privacy and uncovering the relationships between variables in Gaussian directed acyclic graphical (DAG) models. Specifically, it introduces quantile-discretized Gaussian DAG models where each node variable is discretized based on the quantiles. Additionally, it proposes the bi-partition process, which aids in recovering the covariance matrix; hence, the models can be identifiable. Furthermore, a consistent algorithm is developed for learning the underlying structure using the quantile-based discretized data. Finally, through numerical experiments and the application of DAG learning algorithms to discretized MLB data, the proposed algorithm is demonstrated to significantly outperform the state-of-the-art DAG model learning algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信