LA-ResUNet: Attention-based network for longitudinal liver tumor segmentation from CT images

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Ri Jin , Hu-Ying Tang , Qian Yang , Wei Chen
{"title":"LA-ResUNet: Attention-based network for longitudinal liver tumor segmentation from CT images","authors":"Ri Jin ,&nbsp;Hu-Ying Tang ,&nbsp;Qian Yang ,&nbsp;Wei Chen","doi":"10.1016/j.compmedimag.2025.102536","DOIUrl":null,"url":null,"abstract":"<div><div>Longitudinal liver tumor segmentation plays a fundamental role in studying and monitoring the progression of associated diseases. The correlation and differences between longitudinal data can further improve segmentation performance, which are inevitably omitted in single-time-point segmentation. However, there is no research in this field due to the lack of relevant data. To this issue, we collect and annotate the first longitudinal liver tumor segmentation benchmark dataset. A novel strategy that utilizes images from one time point to facilitate the image segmentation from another time point of the same patient is presented. On this basis, we propose a longitudinal attention based residual U-shaped network. Within it, a channel &amp; spatial attention module quantifies both channel-wise and spatial-wise dependencies of each feature to refine feature representations. And a longitudinal co-segmentation module captures cross-temporal correlation to recalibrate the feature at one time point according to another one for enhanced segmentation. Longitudinal segmentation is achieved by plugging these two multi-scale modules into each layer of the backbone network. Extensive experiments on our CT liver tumor dataset and an MRI brain tumor dataset have validated the effectiveness of the established strategy and the longitudinal segmentation ability of our network. Ablation studies have verified the functions of the proposed modules and their respective components.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102536"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089561112500045X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal liver tumor segmentation plays a fundamental role in studying and monitoring the progression of associated diseases. The correlation and differences between longitudinal data can further improve segmentation performance, which are inevitably omitted in single-time-point segmentation. However, there is no research in this field due to the lack of relevant data. To this issue, we collect and annotate the first longitudinal liver tumor segmentation benchmark dataset. A novel strategy that utilizes images from one time point to facilitate the image segmentation from another time point of the same patient is presented. On this basis, we propose a longitudinal attention based residual U-shaped network. Within it, a channel & spatial attention module quantifies both channel-wise and spatial-wise dependencies of each feature to refine feature representations. And a longitudinal co-segmentation module captures cross-temporal correlation to recalibrate the feature at one time point according to another one for enhanced segmentation. Longitudinal segmentation is achieved by plugging these two multi-scale modules into each layer of the backbone network. Extensive experiments on our CT liver tumor dataset and an MRI brain tumor dataset have validated the effectiveness of the established strategy and the longitudinal segmentation ability of our network. Ablation studies have verified the functions of the proposed modules and their respective components.
LA-ResUNet:基于注意力的CT图像纵向肝脏肿瘤分割网络
肝脏肿瘤纵向分割是研究和监测相关疾病进展的基础。纵向数据之间的相关性和差异性可以进一步提高分割性能,而这在单时间点分割中不可避免地会被忽略。但由于缺乏相关数据,目前尚无相关研究。针对这一问题,我们收集并标注了第一个纵向肝脏肿瘤分割基准数据集。提出了一种利用一个时间点的图像来促进同一患者的另一个时间点的图像分割的新策略。在此基础上,我们提出了一个基于纵向注意力的残差u型网络。在它里面,有一个通道& &;空间注意模块量化每个特征的通道和空间依赖关系,以改进特征表示。纵向共分割模块捕获跨时间相关性,在一个时间点根据另一个时间点重新校准特征,以增强分割。纵向分割是通过将这两个多尺度模块插入主干网的每一层来实现的。在我们的CT肝肿瘤数据集和MRI脑肿瘤数据集上进行的大量实验验证了所建立策略的有效性和我们的网络的纵向分割能力。烧蚀研究已经验证了所提出的模块及其各自组件的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信