Haoran Zhang , Mingzhong Pan , Chenglong Zhang , Chenyang Xu , Hongxing Qi , Dapeng Lei , Xiaopeng Ma
{"title":"ULST: U-shaped LeWin Spectral Transformer for virtual staining of pathological sections","authors":"Haoran Zhang , Mingzhong Pan , Chenglong Zhang , Chenyang Xu , Hongxing Qi , Dapeng Lei , Xiaopeng Ma","doi":"10.1016/j.compmedimag.2025.102534","DOIUrl":null,"url":null,"abstract":"<div><div>At present, pathological section staining faces several challenges, including complex sample preparation and stringent infrastructure requirements. Virtual staining methods utilizing deep neural networks to automatically generate stained images are gaining recognition. However, most current virtual staining techniques rely on standard RGB microscopy, which lacks spatial spectral information. In contrast, hyperspectral imaging of pathological sections provides rich spatial spectral data while maintaining high resolution. To address this issue, the U-shaped Locally-enhanced Window (LeWin) Spectral Transformer (ULST) was developed to convert unstained hyperspectral microscopic images into RGB equivalents of hematoxylin and eosin (HE) stained samples. The LeWin Spectral Transformer (LST) block within ULST takes full advantage of the transformer’s attention extraction capabilities. It applies local self-attention in the spatial domain using non-overlapping windows to capture local context while significantly reducing computational complexity for high-resolution feature maps and preserving spatial features from hyperspectral images (HSI). Furthermore, the Spectral Transformer collects spectral features without losing spatial information. By integrating a multi-scale encoder-bottle-decoder structure in a U-shaped network configuration with sequential symmetric connections of LSTs, ULST performs virtual HE staining on microscopic images of unstained hyperspectral pathological sections. Qualitative and quantitative experiments show that ULST performs better than other advanced virtual staining methods in the virtual HE staining task.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102534"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
At present, pathological section staining faces several challenges, including complex sample preparation and stringent infrastructure requirements. Virtual staining methods utilizing deep neural networks to automatically generate stained images are gaining recognition. However, most current virtual staining techniques rely on standard RGB microscopy, which lacks spatial spectral information. In contrast, hyperspectral imaging of pathological sections provides rich spatial spectral data while maintaining high resolution. To address this issue, the U-shaped Locally-enhanced Window (LeWin) Spectral Transformer (ULST) was developed to convert unstained hyperspectral microscopic images into RGB equivalents of hematoxylin and eosin (HE) stained samples. The LeWin Spectral Transformer (LST) block within ULST takes full advantage of the transformer’s attention extraction capabilities. It applies local self-attention in the spatial domain using non-overlapping windows to capture local context while significantly reducing computational complexity for high-resolution feature maps and preserving spatial features from hyperspectral images (HSI). Furthermore, the Spectral Transformer collects spectral features without losing spatial information. By integrating a multi-scale encoder-bottle-decoder structure in a U-shaped network configuration with sequential symmetric connections of LSTs, ULST performs virtual HE staining on microscopic images of unstained hyperspectral pathological sections. Qualitative and quantitative experiments show that ULST performs better than other advanced virtual staining methods in the virtual HE staining task.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.