The fine art of fine-tuning: A structured review of advanced LLM fine-tuning techniques

Samar Pratap , Alston Richard Aranha , Divyanshu Kumar , Gautam Malhotra , Anantharaman Palacode Narayana Iyer , Shylaja S.S.
{"title":"The fine art of fine-tuning: A structured review of advanced LLM fine-tuning techniques","authors":"Samar Pratap ,&nbsp;Alston Richard Aranha ,&nbsp;Divyanshu Kumar ,&nbsp;Gautam Malhotra ,&nbsp;Anantharaman Palacode Narayana Iyer ,&nbsp;Shylaja S.S.","doi":"10.1016/j.nlp.2025.100144","DOIUrl":null,"url":null,"abstract":"<div><div>Transformer-based models have consistently demonstrated superior accuracy compared to various traditional models across a range of downstream tasks. However, due to their large nature, training or fine-tuning them for specific tasks has heavy computational and memory demands. This causes the creation of specialized transformer-based models to be almost impossible in the generally present constrained scenarios. To tackle this issue and to make these large models more accessible, a plethora of techniques have been developed. In this study, we will be reviewing the types of techniques developed, their impacts and benefits concerning performance and resource usage along with the latest developments in the domain. We have broadly categorized these techniques into six key areas: Changes in Training Method, Changes in Adapter, Quantization, Parameter Selection, Mixture of Experts, and Application based methods. We collated the results of various techniques on common benchmarks and also evaluated their performance on different datasets and base models.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"11 ","pages":"Article 100144"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer-based models have consistently demonstrated superior accuracy compared to various traditional models across a range of downstream tasks. However, due to their large nature, training or fine-tuning them for specific tasks has heavy computational and memory demands. This causes the creation of specialized transformer-based models to be almost impossible in the generally present constrained scenarios. To tackle this issue and to make these large models more accessible, a plethora of techniques have been developed. In this study, we will be reviewing the types of techniques developed, their impacts and benefits concerning performance and resource usage along with the latest developments in the domain. We have broadly categorized these techniques into six key areas: Changes in Training Method, Changes in Adapter, Quantization, Parameter Selection, Mixture of Experts, and Application based methods. We collated the results of various techniques on common benchmarks and also evaluated their performance on different datasets and base models.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信