Paola F. Antonietti , Luca Dedè , Gabriele Loli , Monica Montardini , Giancarlo Sangalli , Paolo Tesini
{"title":"Space–time Isogeometric Analysis of cardiac electrophysiology","authors":"Paola F. Antonietti , Luca Dedè , Gabriele Loli , Monica Montardini , Giancarlo Sangalli , Paolo Tesini","doi":"10.1016/j.cma.2025.117957","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a stabilized space–time method for the monodomain equation coupled with the Rogers–McCulloch ionic model, which is widely used to simulate electrophysiological wave propagation in the cardiac tissue. By extending the Spline Upwind method and exploiting low-rank matrix approximations, as well as preconditioned solvers, we achieve both significant computational efficiency and accuracy. In particular, we develop a formulation that is both simple and highly effective, designed to minimize spurious oscillations and ensuring computational efficiency. We rigorously validate the method’s performance through a series of numerical experiments, showing its robustness and reliability in diverse scenarios.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117957"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002294","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a stabilized space–time method for the monodomain equation coupled with the Rogers–McCulloch ionic model, which is widely used to simulate electrophysiological wave propagation in the cardiac tissue. By extending the Spline Upwind method and exploiting low-rank matrix approximations, as well as preconditioned solvers, we achieve both significant computational efficiency and accuracy. In particular, we develop a formulation that is both simple and highly effective, designed to minimize spurious oscillations and ensuring computational efficiency. We rigorously validate the method’s performance through a series of numerical experiments, showing its robustness and reliability in diverse scenarios.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.