A comparison of strategies to embed physics-informed neural networks in nonlinear model predictive control formulations solved via direct transcription
IF 3.9 2区 工程技术Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Carlos Andrés Elorza Casas, Luis A. Ricardez-Sandoval, Joshua L. Pulsipher
{"title":"A comparison of strategies to embed physics-informed neural networks in nonlinear model predictive control formulations solved via direct transcription","authors":"Carlos Andrés Elorza Casas, Luis A. Ricardez-Sandoval, Joshua L. Pulsipher","doi":"10.1016/j.compchemeng.2025.109105","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to benchmark candidate strategies for embedding neural network (NN) surrogates in nonlinear model predictive control (NMPC) formulations that are subject to systems described with partial differential equations and that are solved via direct transcription (i.e., simultaneous methods). This study focuses on the use of physics-informed NNs and physics-informed convolutional NNs as the internal (surrogate) models within the NMPC formulation. One strategy embeds NN models as explicit algebraic constraints, leveraging the automatic differentiation (AD) of an algebraic modelling language (AML) to evaluate the derivatives. Alternatively, the solver can be provided with derivatives computed external to the AML via the AD routines of the machine learning environment the NN is trained in. The three numerical experiments considered in this work reveal that replacing mechanistic models with NN surrogates may not always offer computational advantages when smooth activation functions are used in conjunction with a local nonlinear solver (e.g., Ipopt), even with highly nonlinear systems. Moreover, in this context, the external function evaluation of the NN surrogates often outperforms the embedding strategies that rely on explicit algebraic constraints, likely due to the difficulty in initializing the auxiliary variables and constraints introduced by explicit algebraic reformulations.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109105"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to benchmark candidate strategies for embedding neural network (NN) surrogates in nonlinear model predictive control (NMPC) formulations that are subject to systems described with partial differential equations and that are solved via direct transcription (i.e., simultaneous methods). This study focuses on the use of physics-informed NNs and physics-informed convolutional NNs as the internal (surrogate) models within the NMPC formulation. One strategy embeds NN models as explicit algebraic constraints, leveraging the automatic differentiation (AD) of an algebraic modelling language (AML) to evaluate the derivatives. Alternatively, the solver can be provided with derivatives computed external to the AML via the AD routines of the machine learning environment the NN is trained in. The three numerical experiments considered in this work reveal that replacing mechanistic models with NN surrogates may not always offer computational advantages when smooth activation functions are used in conjunction with a local nonlinear solver (e.g., Ipopt), even with highly nonlinear systems. Moreover, in this context, the external function evaluation of the NN surrogates often outperforms the embedding strategies that rely on explicit algebraic constraints, likely due to the difficulty in initializing the auxiliary variables and constraints introduced by explicit algebraic reformulations.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.