{"title":"The horospherical p-Christoffel–Minkowski problem in hyperbolic space","authors":"Tianci Luo, Yong Wei","doi":"10.1016/j.na.2025.113799","DOIUrl":null,"url":null,"abstract":"<div><div>The horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem, introduced by Li and Xu (2022), involves prescribing the <span><math><mi>k</mi></math></span>-th horospherical <span><math><mi>p</mi></math></span>-surface area measure for <span><math><mi>h</mi></math></span>-convex domains in hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. This problem generalizes the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Christoffel–Minkowski problem in Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. In this paper, we study a fully nonlinear equation associated with this problem and establish the existence of a uniformly <span><math><mi>h</mi></math></span>-convex solution under suitable assumptions on the prescribed function. The proof relies on a full rank theorem, which we demonstrate using a viscosity approach inspired by the work of Bryan et al. (2023).</div><div>When <span><math><mrow><mi>p</mi><mo>=</mo><mn>0</mn></mrow></math></span>, the horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> reduces to a Nirenberg-type problem on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in conformal geometry. As a consequence, our result also provides the existence of solutions to this Nirenberg-type problem.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"257 ","pages":"Article 113799"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000537","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The horospherical -Christoffel–Minkowski problem, introduced by Li and Xu (2022), involves prescribing the -th horospherical -surface area measure for -convex domains in hyperbolic space . This problem generalizes the classical Christoffel–Minkowski problem in Euclidean space . In this paper, we study a fully nonlinear equation associated with this problem and establish the existence of a uniformly -convex solution under suitable assumptions on the prescribed function. The proof relies on a full rank theorem, which we demonstrate using a viscosity approach inspired by the work of Bryan et al. (2023).
When , the horospherical -Christoffel–Minkowski problem in reduces to a Nirenberg-type problem on in conformal geometry. As a consequence, our result also provides the existence of solutions to this Nirenberg-type problem.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.