Determinants of human-machine interaction technology usage: An automated machine learning approach

IF 11.1 1区 管理学 Q1 ENGINEERING, INDUSTRIAL
Ilan Alon , Vanessa P.G. Bretas , Jefferson R.B. Galetti , Marta Götz , Barbara Jankowska
{"title":"Determinants of human-machine interaction technology usage: An automated machine learning approach","authors":"Ilan Alon ,&nbsp;Vanessa P.G. Bretas ,&nbsp;Jefferson R.B. Galetti ,&nbsp;Marta Götz ,&nbsp;Barbara Jankowska","doi":"10.1016/j.technovation.2025.103230","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of Industry 4.0 technologies has reshaped modern manufacturing. Human-machine interaction (HMI) technologies are essential to this transformation, as they facilitate communication between people and machines, bridge the digital and physical worlds, improve decision-making, and increase overall productivity. However, the diffusion of these cutting-edge technologies varies greatly, possibly resulting in persistent geographical disparities over time. Moreover, our understanding of the factors determining the use of HMI technologies is still limited. Our goal is to investigate the factors that influence manufacturing firms’ use of these technologies, providing a comprehensive perspective. Combining insights provided by economic geography and innovation studies, we take a holistic approach that includes a wide range of technological, organizational, and environmental (TOE) factors. Using Automated Machine Learning (AML), we identify non-linear relationships between key predictors and the usage of HMI technology. Our analysis highlights the importance of geographical and organizational proximities in absorbing local external knowledge and coordinating long-distance knowledge pipelines alongside traditional factors influencing the rate of technology use.</div></div>","PeriodicalId":49444,"journal":{"name":"Technovation","volume":"143 ","pages":"Article 103230"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technovation","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166497225000628","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of Industry 4.0 technologies has reshaped modern manufacturing. Human-machine interaction (HMI) technologies are essential to this transformation, as they facilitate communication between people and machines, bridge the digital and physical worlds, improve decision-making, and increase overall productivity. However, the diffusion of these cutting-edge technologies varies greatly, possibly resulting in persistent geographical disparities over time. Moreover, our understanding of the factors determining the use of HMI technologies is still limited. Our goal is to investigate the factors that influence manufacturing firms’ use of these technologies, providing a comprehensive perspective. Combining insights provided by economic geography and innovation studies, we take a holistic approach that includes a wide range of technological, organizational, and environmental (TOE) factors. Using Automated Machine Learning (AML), we identify non-linear relationships between key predictors and the usage of HMI technology. Our analysis highlights the importance of geographical and organizational proximities in absorbing local external knowledge and coordinating long-distance knowledge pipelines alongside traditional factors influencing the rate of technology use.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technovation
Technovation 管理科学-工程:工业
CiteScore
15.10
自引率
11.20%
发文量
208
审稿时长
91 days
期刊介绍: The interdisciplinary journal Technovation covers various aspects of technological innovation, exploring processes, products, and social impacts. It examines innovation in both process and product realms, including social innovations like regulatory frameworks and non-economic benefits. Topics range from emerging trends and capital for development to managing technology-intensive ventures and innovation in organizations of different sizes. It also discusses organizational structures, investment strategies for science and technology enterprises, and the roles of technological innovators. Additionally, it addresses technology transfer between developing countries and innovation across enterprise, political, and economic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信