Boosting the convergence of DSMC by GSIS

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Liyan Luo , Qi Li , Fei Fei , Lei Wu
{"title":"Boosting the convergence of DSMC by GSIS","authors":"Liyan Luo ,&nbsp;Qi Li ,&nbsp;Fei Fei ,&nbsp;Lei Wu","doi":"10.1016/j.jcp.2025.113959","DOIUrl":null,"url":null,"abstract":"<div><div>A deterministic-stochastic coupling scheme is developed for simulating rarefied gas flows, where the key process is the alternative solving of the macroscopic synthetic equations [Su et al. (2020) <span><span>[22]</span></span>] and the mesoscopic equation via the asymptotic-preserving time-relaxed Monte Carlo scheme [Fei (2023) <span><span>[19]</span></span>]. Firstly, the macroscopic synthetic equations are exactly derived from the Boltzmann equation, incorporating not only the Newtonian viscosity and Fourier thermal conduction laws but also higher-order constitutive relations that capture rarefaction effects; the latter are extracted from the stochastic solver over a defined sampling interval. Secondly, the macroscopic synthetic equations, with the initial field extracted from the stochastic solver over the same sampling interval, are solved to the steady state or over a certain iteration steps. Finally, the simulation particles in the stochastic solver are updated to match the density, velocity, and temperature obtained from the macroscopic synthetic equations. Moreover, simulation particles in the subsequent interval will be partly sampled according to the solutions of macroscopic synthetic equations. As a result, our coupling strategy enhances the asymptotic-preserving characteristic of the stochastic solver and substantially accelerates convergence towards the steady state. Several numerical tests are performed, and it is found that our method can reduce the computational cost in the near-continuum flow regime by two orders of magnitude compared to the direct simulation Monte Carlo method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"532 ","pages":"Article 113959"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002426","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A deterministic-stochastic coupling scheme is developed for simulating rarefied gas flows, where the key process is the alternative solving of the macroscopic synthetic equations [Su et al. (2020) [22]] and the mesoscopic equation via the asymptotic-preserving time-relaxed Monte Carlo scheme [Fei (2023) [19]]. Firstly, the macroscopic synthetic equations are exactly derived from the Boltzmann equation, incorporating not only the Newtonian viscosity and Fourier thermal conduction laws but also higher-order constitutive relations that capture rarefaction effects; the latter are extracted from the stochastic solver over a defined sampling interval. Secondly, the macroscopic synthetic equations, with the initial field extracted from the stochastic solver over the same sampling interval, are solved to the steady state or over a certain iteration steps. Finally, the simulation particles in the stochastic solver are updated to match the density, velocity, and temperature obtained from the macroscopic synthetic equations. Moreover, simulation particles in the subsequent interval will be partly sampled according to the solutions of macroscopic synthetic equations. As a result, our coupling strategy enhances the asymptotic-preserving characteristic of the stochastic solver and substantially accelerates convergence towards the steady state. Several numerical tests are performed, and it is found that our method can reduce the computational cost in the near-continuum flow regime by two orders of magnitude compared to the direct simulation Monte Carlo method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信