A semi-Lagrangian adaptive-rank (SLAR) method for linear advection and nonlinear Vlasov-Poisson system

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nanyi Zheng , Daniel Hayes , Andrew Christlieb , Jing-Mei Qiu
{"title":"A semi-Lagrangian adaptive-rank (SLAR) method for linear advection and nonlinear Vlasov-Poisson system","authors":"Nanyi Zheng ,&nbsp;Daniel Hayes ,&nbsp;Andrew Christlieb ,&nbsp;Jing-Mei Qiu","doi":"10.1016/j.jcp.2025.113970","DOIUrl":null,"url":null,"abstract":"<div><div>High-order semi-Lagrangian methods for kinetic equations have been under rapid development in the past few decades. In this work, we propose a semi-Lagrangian adaptive rank (SLAR) integrator in the finite difference framework for linear advection and nonlinear Vlasov-Poisson systems without dimensional splitting. The proposed method leverages the semi-Lagrangian approach to allow for significantly larger time steps while also exploiting the low-rank structure of the solution. This is achieved through cross approximation of matrices, also referred to as CUR or pseudo-skeleton approximation, where representative columns and rows are selected using specific strategies. To maintain numerical stability and ensure local mass conservation, we apply singular value truncation and a mass-conservative projection following the cross approximation of the updated solution. The computational complexity of our method scales linearly with the mesh size <em>N</em> per dimension, compared to the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> complexity of traditional full-rank methods per time step. The algorithm is extended to handle nonlinear Vlasov-Poisson systems using a Runge-Kutta exponential integrator. Moreover, we evolve the macroscopic conservation laws for charge densities implicitly, enabling the use of large time steps that align with the semi-Lagrangian solver. We also perform a mass-conservative correction to ensure that the adaptive rank solution preserves macroscopic charge density conservation. To validate the efficiency and effectiveness of our method, we conduct a series of benchmark tests on both linear advection and nonlinear Vlasov-Poisson systems. The proposed algorithm will have the potential in overcoming the curse of dimensionality for beyond 2D high dimensional problems, which is the subject of our future work.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"532 ","pages":"Article 113970"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002530","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

High-order semi-Lagrangian methods for kinetic equations have been under rapid development in the past few decades. In this work, we propose a semi-Lagrangian adaptive rank (SLAR) integrator in the finite difference framework for linear advection and nonlinear Vlasov-Poisson systems without dimensional splitting. The proposed method leverages the semi-Lagrangian approach to allow for significantly larger time steps while also exploiting the low-rank structure of the solution. This is achieved through cross approximation of matrices, also referred to as CUR or pseudo-skeleton approximation, where representative columns and rows are selected using specific strategies. To maintain numerical stability and ensure local mass conservation, we apply singular value truncation and a mass-conservative projection following the cross approximation of the updated solution. The computational complexity of our method scales linearly with the mesh size N per dimension, compared to the O(N2) complexity of traditional full-rank methods per time step. The algorithm is extended to handle nonlinear Vlasov-Poisson systems using a Runge-Kutta exponential integrator. Moreover, we evolve the macroscopic conservation laws for charge densities implicitly, enabling the use of large time steps that align with the semi-Lagrangian solver. We also perform a mass-conservative correction to ensure that the adaptive rank solution preserves macroscopic charge density conservation. To validate the efficiency and effectiveness of our method, we conduct a series of benchmark tests on both linear advection and nonlinear Vlasov-Poisson systems. The proposed algorithm will have the potential in overcoming the curse of dimensionality for beyond 2D high dimensional problems, which is the subject of our future work.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信