A data-driven personalized approach to predict blood glucose levels in type-1 diabetes patients exercising in free-living conditions

IF 7 2区 医学 Q1 BIOLOGY
Anas Neumann , Yessine Zghal , Marzia Angela Cremona , Adnene Hajji , Michael Morin , Monia Rekik
{"title":"A data-driven personalized approach to predict blood glucose levels in type-1 diabetes patients exercising in free-living conditions","authors":"Anas Neumann ,&nbsp;Yessine Zghal ,&nbsp;Marzia Angela Cremona ,&nbsp;Adnene Hajji ,&nbsp;Michael Morin ,&nbsp;Monia Rekik","doi":"10.1016/j.compbiomed.2025.110015","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>The development of new technologies has generated vast amount of data that can be analyzed to better understand and predict the glycemic behavior of people living with type 1 diabetes. This paper aims to assess whether a data-driven approach can accurately and safely predict blood glucose levels in patients with type 1 diabetes exercising in free-living conditions.</div></div><div><h3>Methods:</h3><div>Multiple machine learning (XGBoost, Random Forest) and deep learning (LSTM, CNN-LSTM, Dual-encoder with Attention layer) regression models were considered. Each deep-learning model was implemented twice: first, as a personalized model trained solely on the target patient’s data, and second, as a fine-tuned model of a population-based training model. The datasets used for training and testing the models were derived from the Type 1 Diabetes Exercise Initiative (T1DEXI). A total of 79 patients in T1DEXI met our inclusion criteria. Our models used various features related to continuous glucose monitoring, insulin pumps, carbohydrate intake, exercise (intensity and duration), and physical activity-related information (steps and heart rate). This data was available for four weeks for each of the 79 included patients. Three prediction horizons (10, 20, and 30 min) were tested and analyzed.</div></div><div><h3>Results:</h3><div>For each patient, there always exists either a machine learning or a deep learning model that conveniently predicts BGLs for up to 30 min. The best performing model differs from one patient to another. When considering the best performing model for each patient, the median and the mean Root Mean Squared Error (RMSE) values (across the 79 patients) for predictions made 10 min ahead were 6.99 mg/dL and 7.46 mg/dL, respectively. For predictions made 30 min ahead, the median and mean RMSE values were 16.85 mg/dL and 17.74 mg/dL, respectively. The majority of the predictions output by the best model of each patient fell within the clinically safe zones A and B of the Clarke Error Grid (CEG), with almost no predictions falling into the unsafe zone E. The most challenging patient to predict 30 min ahead achieved an RMSE value of 32.31 mg/dL (with the corresponding best performing model). The best-predicted patient had an RMSE value of 10.48 mg/dL. Predicting blood glucose levels was more difficult during and after exercise, resulting in higher RMSE values on average. Prediction errors during and after physical activity (two hours and four hours after) generally remained within the clinical safe zones of the CEG with less than 0.5% of predictions falling into the harmful zones D and E, regardless of the exercise category.</div></div><div><h3>Conclusions:</h3><div>Data-driven approaches can accurately predict blood glucose levels in type 1 diabetes patients exercising in free-living conditions. The best-performing model varies across patients. Approaches in which a population-based model is initially trained and then fine-tuned for each individual patient generally achieve the best performance for the majority of patients. Some patients remain challenging to predict with no straightforward explanation of why a patient is more challenging to predict than another.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001048252500366X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective:

The development of new technologies has generated vast amount of data that can be analyzed to better understand and predict the glycemic behavior of people living with type 1 diabetes. This paper aims to assess whether a data-driven approach can accurately and safely predict blood glucose levels in patients with type 1 diabetes exercising in free-living conditions.

Methods:

Multiple machine learning (XGBoost, Random Forest) and deep learning (LSTM, CNN-LSTM, Dual-encoder with Attention layer) regression models were considered. Each deep-learning model was implemented twice: first, as a personalized model trained solely on the target patient’s data, and second, as a fine-tuned model of a population-based training model. The datasets used for training and testing the models were derived from the Type 1 Diabetes Exercise Initiative (T1DEXI). A total of 79 patients in T1DEXI met our inclusion criteria. Our models used various features related to continuous glucose monitoring, insulin pumps, carbohydrate intake, exercise (intensity and duration), and physical activity-related information (steps and heart rate). This data was available for four weeks for each of the 79 included patients. Three prediction horizons (10, 20, and 30 min) were tested and analyzed.

Results:

For each patient, there always exists either a machine learning or a deep learning model that conveniently predicts BGLs for up to 30 min. The best performing model differs from one patient to another. When considering the best performing model for each patient, the median and the mean Root Mean Squared Error (RMSE) values (across the 79 patients) for predictions made 10 min ahead were 6.99 mg/dL and 7.46 mg/dL, respectively. For predictions made 30 min ahead, the median and mean RMSE values were 16.85 mg/dL and 17.74 mg/dL, respectively. The majority of the predictions output by the best model of each patient fell within the clinically safe zones A and B of the Clarke Error Grid (CEG), with almost no predictions falling into the unsafe zone E. The most challenging patient to predict 30 min ahead achieved an RMSE value of 32.31 mg/dL (with the corresponding best performing model). The best-predicted patient had an RMSE value of 10.48 mg/dL. Predicting blood glucose levels was more difficult during and after exercise, resulting in higher RMSE values on average. Prediction errors during and after physical activity (two hours and four hours after) generally remained within the clinical safe zones of the CEG with less than 0.5% of predictions falling into the harmful zones D and E, regardless of the exercise category.

Conclusions:

Data-driven approaches can accurately predict blood glucose levels in type 1 diabetes patients exercising in free-living conditions. The best-performing model varies across patients. Approaches in which a population-based model is initially trained and then fine-tuned for each individual patient generally achieve the best performance for the majority of patients. Some patients remain challenging to predict with no straightforward explanation of why a patient is more challenging to predict than another.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信