3D Imaging Reveals Widespread Stacking Disorder in Single Crystal 2D Covalent Organic Frameworks

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Priti Kharel, Patrick T. Carmichael, Anusree Natraj, Chloe E. Pelkowski, Sang hyun Bae, William R. Dichtel, Pinshane Y. Huang
{"title":"3D Imaging Reveals Widespread Stacking Disorder in Single Crystal 2D Covalent Organic Frameworks","authors":"Priti Kharel, Patrick T. Carmichael, Anusree Natraj, Chloe E. Pelkowski, Sang hyun Bae, William R. Dichtel, Pinshane Y. Huang","doi":"10.1021/jacs.4c16207","DOIUrl":null,"url":null,"abstract":"Although tailored porosity is a defining feature of layered, two-dimensional (2D) polymers known as 2D covalent organic frameworks (COFs), understanding the interplanar stacking of 2D COFs and their resulting three-dimensional (3D) pore structure remains challenging. Here, we use scanning transmission electron microscopy and ptychography, an emerging 3D angstrom-scale imaging method, to study single-crystalline particles of the imine-linked 2D COF TAPB-DMPDA. Previously assumed to adopt an average-eclipsed structure with only angstrom-level stacking disorder, we find the crystals contain widespread stacking disorder of larger magnitudes, including interplanar shifts up to a half unit cell and nanoscale inhomogeneities in stacking and tilt. 3D visualizations show pore channels are distorted by this stacking disorder. The extensive stacking disorder found in even high-quality 2D COFs has profound implications for envisioned applications and should motivate the development of design strategies to control their 3D structures.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"36 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16207","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although tailored porosity is a defining feature of layered, two-dimensional (2D) polymers known as 2D covalent organic frameworks (COFs), understanding the interplanar stacking of 2D COFs and their resulting three-dimensional (3D) pore structure remains challenging. Here, we use scanning transmission electron microscopy and ptychography, an emerging 3D angstrom-scale imaging method, to study single-crystalline particles of the imine-linked 2D COF TAPB-DMPDA. Previously assumed to adopt an average-eclipsed structure with only angstrom-level stacking disorder, we find the crystals contain widespread stacking disorder of larger magnitudes, including interplanar shifts up to a half unit cell and nanoscale inhomogeneities in stacking and tilt. 3D visualizations show pore channels are distorted by this stacking disorder. The extensive stacking disorder found in even high-quality 2D COFs has profound implications for envisioned applications and should motivate the development of design strategies to control their 3D structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信