Statistical mechanics, entropy and temperature analog of dislocations moving on fluctuating resistance landscapes

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuang Lyu , Yuanhang Xia , Wei Li , Te Zhu , Yue Chen , Alfonso H.W. Ngan
{"title":"Statistical mechanics, entropy and temperature analog of dislocations moving on fluctuating resistance landscapes","authors":"Shuang Lyu ,&nbsp;Yuanhang Xia ,&nbsp;Wei Li ,&nbsp;Te Zhu ,&nbsp;Yue Chen ,&nbsp;Alfonso H.W. Ngan","doi":"10.1016/j.actamat.2025.121002","DOIUrl":null,"url":null,"abstract":"<div><div>High/medium-entropy alloys, also known as complex concentrated alloys (CCAs), are so called because the mixing entropy reaches a maximum when the constituent multi-elements adopt equiatomic ratios. However, the mixing entropy relates little to mechanical strength for which these alloys are most studied. By analyzing dislocations in VCoNi via electron microscopy and molecular-dynamics from a machine interatomic potential, their energies are found to obey a maximum-entropy distribution in the random alloy state, but not in the annealed state where local chemical order (LCO) exists. The maximum-entropy distribution is characterized by an athermal, mechanical analog of temperature which relates directly to the alloy strength and dominates over the real temperature over a wide range. The entropy of dislocations is a fingerprint of LCO, and statistical mechanics is an impeccable theoretical framework for understanding dislocations and strength in CCAs.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"291 ","pages":"Article 121002"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High/medium-entropy alloys, also known as complex concentrated alloys (CCAs), are so called because the mixing entropy reaches a maximum when the constituent multi-elements adopt equiatomic ratios. However, the mixing entropy relates little to mechanical strength for which these alloys are most studied. By analyzing dislocations in VCoNi via electron microscopy and molecular-dynamics from a machine interatomic potential, their energies are found to obey a maximum-entropy distribution in the random alloy state, but not in the annealed state where local chemical order (LCO) exists. The maximum-entropy distribution is characterized by an athermal, mechanical analog of temperature which relates directly to the alloy strength and dominates over the real temperature over a wide range. The entropy of dislocations is a fingerprint of LCO, and statistical mechanics is an impeccable theoretical framework for understanding dislocations and strength in CCAs.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信