Shuang Lyu , Yuanhang Xia , Wei Li , Te Zhu , Yue Chen , Alfonso H.W. Ngan
{"title":"Statistical mechanics, entropy and temperature analog of dislocations moving on fluctuating resistance landscapes","authors":"Shuang Lyu , Yuanhang Xia , Wei Li , Te Zhu , Yue Chen , Alfonso H.W. Ngan","doi":"10.1016/j.actamat.2025.121002","DOIUrl":null,"url":null,"abstract":"<div><div>High/medium-entropy alloys, also known as complex concentrated alloys (CCAs), are so called because the mixing entropy reaches a maximum when the constituent multi-elements adopt equiatomic ratios. However, the mixing entropy relates little to mechanical strength for which these alloys are most studied. By analyzing dislocations in VCoNi via electron microscopy and molecular-dynamics from a machine interatomic potential, their energies are found to obey a maximum-entropy distribution in the random alloy state, but not in the annealed state where local chemical order (LCO) exists. The maximum-entropy distribution is characterized by an athermal, mechanical analog of temperature which relates directly to the alloy strength and dominates over the real temperature over a wide range. The entropy of dislocations is a fingerprint of LCO, and statistical mechanics is an impeccable theoretical framework for understanding dislocations and strength in CCAs.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"291 ","pages":"Article 121002"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High/medium-entropy alloys, also known as complex concentrated alloys (CCAs), are so called because the mixing entropy reaches a maximum when the constituent multi-elements adopt equiatomic ratios. However, the mixing entropy relates little to mechanical strength for which these alloys are most studied. By analyzing dislocations in VCoNi via electron microscopy and molecular-dynamics from a machine interatomic potential, their energies are found to obey a maximum-entropy distribution in the random alloy state, but not in the annealed state where local chemical order (LCO) exists. The maximum-entropy distribution is characterized by an athermal, mechanical analog of temperature which relates directly to the alloy strength and dominates over the real temperature over a wide range. The entropy of dislocations is a fingerprint of LCO, and statistical mechanics is an impeccable theoretical framework for understanding dislocations and strength in CCAs.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.