{"title":"Insights into the Dynamics and Binding Mechanisms of the Alkhumra Virus NS2B/NS3 Protease: A Molecular Dynamics Study","authors":"Jurica Novak, Shivananda Kandagalla, Ramesh Sistla","doi":"10.1002/adts.202401406","DOIUrl":null,"url":null,"abstract":"Alkhumra virus, a zoonotic pathogen in the Flaviviridae family, causes severe hemorrhagic fever in humans, yet vaccines and drugs remain unavailable. The nonstructural protein 2B (NS2B)/nonstructural protein 3 (NS3) NS2B/NS3 protease, essential for virion maturation, represents a promising therapeutic target. Structural and dynamical changes induced by NS2B cofactor binding to the NS3 protein are examined using all-atom molecular dynamics simulations. NS2B binding reduces the flexibility of NS3, particularly in contact regions, without altering its secondary structure. Non-bonding van der Waals and electrostatic interactions are identified as the primary driving forces in cofactor binding. The protonation states of catalytic triad residues significantly affect the active pocket's geometry. A drug repurposing campaign utilizing ensemble docking and molecular dynamics simulations identified three DrugBank compounds as potential NS2B/NS3 protease inhibitors. The catalytic serine residue with a deprotonated hydroxyl group contributes most significantly to the free energy of binding. These findings provide a detailed understanding of the molecular interactions underlying ligand binding to NS2B/NS3, offering valuable insights for developing effective inhibitors.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"58 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alkhumra virus, a zoonotic pathogen in the Flaviviridae family, causes severe hemorrhagic fever in humans, yet vaccines and drugs remain unavailable. The nonstructural protein 2B (NS2B)/nonstructural protein 3 (NS3) NS2B/NS3 protease, essential for virion maturation, represents a promising therapeutic target. Structural and dynamical changes induced by NS2B cofactor binding to the NS3 protein are examined using all-atom molecular dynamics simulations. NS2B binding reduces the flexibility of NS3, particularly in contact regions, without altering its secondary structure. Non-bonding van der Waals and electrostatic interactions are identified as the primary driving forces in cofactor binding. The protonation states of catalytic triad residues significantly affect the active pocket's geometry. A drug repurposing campaign utilizing ensemble docking and molecular dynamics simulations identified three DrugBank compounds as potential NS2B/NS3 protease inhibitors. The catalytic serine residue with a deprotonated hydroxyl group contributes most significantly to the free energy of binding. These findings provide a detailed understanding of the molecular interactions underlying ligand binding to NS2B/NS3, offering valuable insights for developing effective inhibitors.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics