An effective model for magnetic field amplification by the magnetorotational and parasitic instabilities

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Miquel Miravet-Tenés, Martin E. Pessah
{"title":"An effective model for magnetic field amplification by the magnetorotational and parasitic instabilities","authors":"Miquel Miravet-Tenés, Martin E. Pessah","doi":"10.1051/0004-6361/202452953","DOIUrl":null,"url":null,"abstract":"The magnetorotational instability (MRI) is considered a leading mechanism for driving angular momentum transport in differentially rotating astrophysical flows, including accretion disks and protoneutron stars. This process is mediated by the exponential amplification of the magnetic field whose final amplitude is envisioned to be limited by secondary (parasitic) instabilities. In this paper, we investigated the saturation of the MRI via parasitic modes relaxing previous approximations. We carried out the first systematic analysis of the evolution of parasitic modes as they feed off the exponentially growing MRI while being advected by the background shear flow. We provide the most accurate calculation of the amplification factor to which the MRI can grow before the fastest parasitic modes reach a comparable amplitude. We find that this amplification factor is remarkably robust, depending only logarithmically on the initial amplitude of the parasitic modes, in reasonable agreement with numerical simulations. Based on these insights, and guided by numerical simulations, we provide a simple analytical expression for the amplification of magnetic fields responsible for MRI-driven angular momentum transport. Our effective model for magnetic field amplification may enable going beyond the standard prescription for viscous transport currently employed in numerical simulations when the MRI cannot be explicitly resolved.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452953","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetorotational instability (MRI) is considered a leading mechanism for driving angular momentum transport in differentially rotating astrophysical flows, including accretion disks and protoneutron stars. This process is mediated by the exponential amplification of the magnetic field whose final amplitude is envisioned to be limited by secondary (parasitic) instabilities. In this paper, we investigated the saturation of the MRI via parasitic modes relaxing previous approximations. We carried out the first systematic analysis of the evolution of parasitic modes as they feed off the exponentially growing MRI while being advected by the background shear flow. We provide the most accurate calculation of the amplification factor to which the MRI can grow before the fastest parasitic modes reach a comparable amplitude. We find that this amplification factor is remarkably robust, depending only logarithmically on the initial amplitude of the parasitic modes, in reasonable agreement with numerical simulations. Based on these insights, and guided by numerical simulations, we provide a simple analytical expression for the amplification of magnetic fields responsible for MRI-driven angular momentum transport. Our effective model for magnetic field amplification may enable going beyond the standard prescription for viscous transport currently employed in numerical simulations when the MRI cannot be explicitly resolved.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信