Making the unmodulated pyramid wavefront sensor smart

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
R. Landman, S. Y. Haffert, J. D. Long, J. R. Males, L. M. Close, W. B. Foster, K. Van Gorkom, O. Guyon, A. D. Hedglen, P. T. Johnson, M. Y. Kautz, J. K. Kueny, J. Li, J. Liberman, J. Lumbres, E. A. McEwen, A. McLeod, L. Schatz, E. Tonucci, K. Twitchell
{"title":"Making the unmodulated pyramid wavefront sensor smart","authors":"R. Landman, S. Y. Haffert, J. D. Long, J. R. Males, L. M. Close, W. B. Foster, K. Van Gorkom, O. Guyon, A. D. Hedglen, P. T. Johnson, M. Y. Kautz, J. K. Kueny, J. Li, J. Liberman, J. Lumbres, E. A. McEwen, A. McLeod, L. Schatz, E. Tonucci, K. Twitchell","doi":"10.1051/0004-6361/202553753","DOIUrl":null,"url":null,"abstract":"Pyramid wavefront sensors (PWFSs) are the preferred choice for current and future extreme adaptive optics (XAO) systems. Almost all instruments use the PWFS in its modulated form to mitigate its limited linearity range. However, this modulation comes at the cost of a reduction in sensitivity, a blindness to petal-piston modes, and a limit to the sensor’s ability to operate at high speeds. Therefore, there is strong interest to use the PWFS without modulation, which can be enabled with nonlinear reconstructors. Here, we present the first on-sky demonstration of XAO with an unmodulated PWFS using a nonlinear reconstructor based on convolutional neural networks. We discuss the real-time implementation on the Magellan Adaptive Optics eXtreme (MagAO-X) instrument using the optimized TensorRT framework and show that inference is fast enough to run the control loop at > 2 kHz frequencies. Our on-sky results demonstrate a successful closed-loop operation using a model calibrated with internal source data that delivers stable and robust correction under varying conditions. Performance analysis reveals that our smart PWFS achieves nearly the same Strehl ratio as the highly optimized modulated PWFS under favorable conditions on bright stars. Notably, we observe an improvement in performance on a fainter star under the influence of strong winds. These findings confirm the feasibility of using the PWFS in its unmodulated form and highlight its potential for next-generation instruments. Future efforts will focus on achieving even higher control loop frequencies (> 3 kHz), optimizing the calibration procedures, and testing its performance on fainter stars, where more gain is expected for the unmodulated PWFS compared to its modulated counterpart.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"65 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202553753","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pyramid wavefront sensors (PWFSs) are the preferred choice for current and future extreme adaptive optics (XAO) systems. Almost all instruments use the PWFS in its modulated form to mitigate its limited linearity range. However, this modulation comes at the cost of a reduction in sensitivity, a blindness to petal-piston modes, and a limit to the sensor’s ability to operate at high speeds. Therefore, there is strong interest to use the PWFS without modulation, which can be enabled with nonlinear reconstructors. Here, we present the first on-sky demonstration of XAO with an unmodulated PWFS using a nonlinear reconstructor based on convolutional neural networks. We discuss the real-time implementation on the Magellan Adaptive Optics eXtreme (MagAO-X) instrument using the optimized TensorRT framework and show that inference is fast enough to run the control loop at > 2 kHz frequencies. Our on-sky results demonstrate a successful closed-loop operation using a model calibrated with internal source data that delivers stable and robust correction under varying conditions. Performance analysis reveals that our smart PWFS achieves nearly the same Strehl ratio as the highly optimized modulated PWFS under favorable conditions on bright stars. Notably, we observe an improvement in performance on a fainter star under the influence of strong winds. These findings confirm the feasibility of using the PWFS in its unmodulated form and highlight its potential for next-generation instruments. Future efforts will focus on achieving even higher control loop frequencies (> 3 kHz), optimizing the calibration procedures, and testing its performance on fainter stars, where more gain is expected for the unmodulated PWFS compared to its modulated counterpart.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信