Veronica Veschi, Francesco Verona, Sebastiano Di Bella, Alice Turdo, Miriam Gaggianesi, Simone Di Franco, Laura Rosa Mangiapane, Chiara Modica, Melania Lo Iacono, Paola Bianca, Ornella Roberta Brancato, Caterina D’Accardo, Gaetana Porcelli, Vincenzo Luca Lentini, Isabella Sperduti, Elisabetta Sciacca, Peter Fitzgerald, David Lopez-Perez, Pierre Martine, Kate Brown, Giuseppe Giannini, Ettore Appella, Giorgio Stassi, Matilde Todaro
{"title":"C1Q+ TPP1+ macrophages promote colon cancer progression through SETD8-driven p53 methylation","authors":"Veronica Veschi, Francesco Verona, Sebastiano Di Bella, Alice Turdo, Miriam Gaggianesi, Simone Di Franco, Laura Rosa Mangiapane, Chiara Modica, Melania Lo Iacono, Paola Bianca, Ornella Roberta Brancato, Caterina D’Accardo, Gaetana Porcelli, Vincenzo Luca Lentini, Isabella Sperduti, Elisabetta Sciacca, Peter Fitzgerald, David Lopez-Perez, Pierre Martine, Kate Brown, Giuseppe Giannini, Ettore Appella, Giorgio Stassi, Matilde Todaro","doi":"10.1186/s12943-025-02293-y","DOIUrl":null,"url":null,"abstract":"In many tumors, the tumor suppressor TP53 is not mutated, but functionally inactivated. However, mechanisms underlying p53 functional inactivation remain poorly understood. SETD8 is the sole enzyme known to mono-methylate p53 on lysine 382 (p53K382me1), resulting in the inhibition of its pro-apoptotic and growth-arresting functions. We analyzed SETD8 and p53K382me1 expression in clinical colorectal cancer (CRC) and inflammatory bowel disease (IBD) samples. Histopathological examinations, RNA sequencing, ChIP assay and preclinical in vivo CRC models, were used to assess the functional role of p53 inactivation in tumor cells and immune cell infiltration. By integrating bulk RNAseq and scRNAseq approaches in CRC patients, SETD8-mediated p53 regulation resulted the most significantly enriched pathway. p53K382me1 expression was confined to colorectal cancer stem cells (CR-CSCs) and C1Q+ TPP1+ tumor-associated macrophages (TAMs) in CRC patient tissues, with high levels predicting decreased survival probability. TAMs promote p53 functional inactivation in CR-CSCs through IL-6 and MCP-1 secretion and increased levels of CEBPD, which directly binds SETD8 promoter thus enhancing its transcription. The direct binding of C1Q present on macrophages and C1Q receptor (C1QR) present on cancer stem cells mediates the cross-talk between the two cell compartments. As monotherapy, SETD8 genetic and pharmacological (UNC0379) inhibition affects the tumor growth and metastasis formation in CRC mouse avatars, with enhanced effects observed when combined with IL-6 receptor targeting. These findings suggest that p53K382me1 may be an early step in tumor initiation, especially in inflammation-induced CRC, and could serve as a functional biomarker and therapeutic target in adjuvant setting for advanced CRCs. ","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"183 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02293-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In many tumors, the tumor suppressor TP53 is not mutated, but functionally inactivated. However, mechanisms underlying p53 functional inactivation remain poorly understood. SETD8 is the sole enzyme known to mono-methylate p53 on lysine 382 (p53K382me1), resulting in the inhibition of its pro-apoptotic and growth-arresting functions. We analyzed SETD8 and p53K382me1 expression in clinical colorectal cancer (CRC) and inflammatory bowel disease (IBD) samples. Histopathological examinations, RNA sequencing, ChIP assay and preclinical in vivo CRC models, were used to assess the functional role of p53 inactivation in tumor cells and immune cell infiltration. By integrating bulk RNAseq and scRNAseq approaches in CRC patients, SETD8-mediated p53 regulation resulted the most significantly enriched pathway. p53K382me1 expression was confined to colorectal cancer stem cells (CR-CSCs) and C1Q+ TPP1+ tumor-associated macrophages (TAMs) in CRC patient tissues, with high levels predicting decreased survival probability. TAMs promote p53 functional inactivation in CR-CSCs through IL-6 and MCP-1 secretion and increased levels of CEBPD, which directly binds SETD8 promoter thus enhancing its transcription. The direct binding of C1Q present on macrophages and C1Q receptor (C1QR) present on cancer stem cells mediates the cross-talk between the two cell compartments. As monotherapy, SETD8 genetic and pharmacological (UNC0379) inhibition affects the tumor growth and metastasis formation in CRC mouse avatars, with enhanced effects observed when combined with IL-6 receptor targeting. These findings suggest that p53K382me1 may be an early step in tumor initiation, especially in inflammation-induced CRC, and could serve as a functional biomarker and therapeutic target in adjuvant setting for advanced CRCs.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.