Optimal convergence of the arbitrary Lagrangian–Eulerian interface tracking method for two-phase Navier–Stokes flow without surface tension

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Buyang Li, Shu Ma, Weifeng Qiu
{"title":"Optimal convergence of the arbitrary Lagrangian–Eulerian interface tracking method for two-phase Navier–Stokes flow without surface tension","authors":"Buyang Li, Shu Ma, Weifeng Qiu","doi":"10.1093/imanum/draf003","DOIUrl":null,"url":null,"abstract":"Optimal-order convergence in the $H^{1}$ norm is proved for an arbitrary Lagrangian–Eulerian (ALE) interface tracking finite element method (FEM) for the sharp interface model of two-phase Navier–Stokes flow without surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior mesh points move according to a harmonic extension of the interface velocity. The error of the semidiscrete ALE interface tracking FEM is shown to be $O(h^{k})$ in the $L^\\infty (0, T; H^{1}(\\varOmega ))$ norm for the Taylor–Hood finite elements of degree $k \\geqslant 2$. This high-order convergence is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experiments illustrate and complement the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal-order convergence in the $H^{1}$ norm is proved for an arbitrary Lagrangian–Eulerian (ALE) interface tracking finite element method (FEM) for the sharp interface model of two-phase Navier–Stokes flow without surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior mesh points move according to a harmonic extension of the interface velocity. The error of the semidiscrete ALE interface tracking FEM is shown to be $O(h^{k})$ in the $L^\infty (0, T; H^{1}(\varOmega ))$ norm for the Taylor–Hood finite elements of degree $k \geqslant 2$. This high-order convergence is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experiments illustrate and complement the theoretical results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信