Fusheng Tan , Zijie Shi , Quanfeng He , Bin Liu , Ao Fu , Zecheng Wu , Zhenbo Wang , Peter K. Liaw , Jia Li , Yong Yang , Qihong Fang
{"title":"Ultra-high temperature diffusion in multi-principal element alloys: Experiment, simulation and theory","authors":"Fusheng Tan , Zijie Shi , Quanfeng He , Bin Liu , Ao Fu , Zecheng Wu , Zhenbo Wang , Peter K. Liaw , Jia Li , Yong Yang , Qihong Fang","doi":"10.1016/j.ijplas.2025.104322","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) have garnered significant attention due to their exceptional performance under extreme conditions such as high temperatures and irradiation, yet their diffusion behavior and mechanisms at elevated temperatures remain elusive. In this work, we investigate the diffusivity of a Ni<sub>x</sub>CoCr alloy system under high temperature conditions as a model for MPEAs. Our findings reveal that, the alloys with high mixing entropy exhibit unexpectedly diffusivity at ultra-high temperatures, challenging the conventional wisdom that diffusion in high-entropy alloys is typically sluggish. Based on tight-binging model, it is revealed that severe lattice distortion and electron interaction in high-entropy systems markedly weaken the atomic bonding strength. This phenomenon significantly reduces the vacancy formation energy and substantially increases the vacancy concentration especially at high temperature, thereby counteracting the inhibitory effect of reduced vacancy jump frequency on diffusion due to lattice distortion. This discovery not only provides new insights into the diffusion mechanisms of high-entropy alloys under extreme conditions but also holds significant implications for the design and optimization of high-performance materials suitable for extreme environments.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104322"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000816","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-principal element alloys (MPEAs) have garnered significant attention due to their exceptional performance under extreme conditions such as high temperatures and irradiation, yet their diffusion behavior and mechanisms at elevated temperatures remain elusive. In this work, we investigate the diffusivity of a NixCoCr alloy system under high temperature conditions as a model for MPEAs. Our findings reveal that, the alloys with high mixing entropy exhibit unexpectedly diffusivity at ultra-high temperatures, challenging the conventional wisdom that diffusion in high-entropy alloys is typically sluggish. Based on tight-binging model, it is revealed that severe lattice distortion and electron interaction in high-entropy systems markedly weaken the atomic bonding strength. This phenomenon significantly reduces the vacancy formation energy and substantially increases the vacancy concentration especially at high temperature, thereby counteracting the inhibitory effect of reduced vacancy jump frequency on diffusion due to lattice distortion. This discovery not only provides new insights into the diffusion mechanisms of high-entropy alloys under extreme conditions but also holds significant implications for the design and optimization of high-performance materials suitable for extreme environments.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.